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The study is devoted to the investigation of the electrocardiographic (ECG) features to distinguish norm
and myocardial ischemia in reduced set of electrocardiographic leads. In particular, for myocardial ischemia
detection the spectral features of the electrocardiographic signal and characteristics of the shape of ECG
waves are considered. The main features commonly used for myocardial ischemia detection are described
in the paper, as well as more reliable analogs are proposed for the considered task. The approach for ECG
signal preprocessing, identification of the necessary signal segments and subsequent calculation of features is
described in detail. The considered features are based on the areas under the characteristic waves of the ECG
signal and the spectral distribution of these waves. The most informative features for myocardial ischemia
detection are identified and selected from the initial set of parameters which led to a two-fold reduction in
number of ECG leads comparing to the standard 12-lead electrocardiogram. The techniques for determining
the proposed features, namely the ratio of the area under T wave to the area under the P wave, as well as
the ratio of the area under T wave to the area of the entire cardiac cycle, are considered. These features
together with other calculated parameters are assumed to describe the majority of pathology cases and
gave a high accuracy of the classification ECG to norm and ischemic myocardial diseasesince they reflect
the bioelectrical processes that occur in the presence of myocardial ischemia and manifest themselves on
the surface ECG. Based on the analysis of principal components and the method t-distributed stochastic
neighbor embedding, the distribution of data in the space of features that characterize the classes of norm
and pathology was shown. Raw ECG data in norm and with cases of myocardial ischemia were obtained
from the ”PTB Diagnostic ECG Database” used in ”The PhysioNet/Computing in Cardiology Challenge
2020”. This database contains 22353 ECG records from 290 persons with 12 ECG leads (I, II, III, aVR, aVL,
aVF, and V1–V6). The database contains the high-resolution ECG signals, which enabled to obtain 10,000
cardio cycles presenting norm and myocardial ischemia pathology for the subsequent training the machine
learning algorithms. Based on the obtained features, various machine learning algorithms were trained and
the accuracy was compared on different combinations of ECG leads. Аs a result of cross-validation, the
accuracy of myocardial ischemia detection was 99% with a standard deviation of 0.4% for 6 leads (I, II, III,
AVR, AVL, AVF) and 93% with a standard deviation of 0.12% for one lead (I). Thus, it was shown, that
with machine learning methods it is possible to recognize ischemic myocardial disease with high accuracy
and stability using six standard ECG leads or only one ECG lead.
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Introduction

Heart diseases are the main reason for mortality in
the world [1] and myocardial ischemia and infarct are
among them.

To avoid severe consequences, it is necessary to find
out the initial reason of a heart attack [2]. Especially
it is extremely important to reveal the initial signs of
myocardial ischemia in the early stages. So automatic
detection of myocardial infarct and ischemia is an
important part of timely identification of pathology
and saving human lives.

Today leading IT companies develop smart
technologies for healthcare, which eventually take
the format of portable devices. Nowadays portable
technologies and devices give an opportunity to regi-
ster ECG at home, calculate heart rate and heart-rate
variability [3]. So it makes it possible to detect ischemia
and myocardial infarct before occurring of obvious
symptoms. Today for detection of myocardial infarct
and heart ischemia six ECG leads are commonly used
or three leads at least. So it makes sense to detect this
pathology with a lower number of ECG leads with the
use of machine learning methods.

http://radap.kpi.ua/radiotechnique/article/view/1787
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The reason for myocardial infarction is a shortage of
oxygen in the myocardium with the subsequent death
of heart muscle cells. The shortage of oxygen can be
caused by obesity, diabetes mellitus, blood pressure
disorders, smoking, alcoholism, drug addiction, peri-
pheral vascular disease. Also, these pathologies can be
manifestations of respiratory diseases, complications or
viral infections such as COVID-19, and others. The big
amount of possible causes may complicate immediate
diagnosis, so it is very important to detect myocardi-
al ischemia and infarction automatically, using only
data that can be measured (like ECG, blood pressure,
photoplethysmogram etc).

Big amount of biomedical data published in world-
famous resources gives an opportunity for developers to
create new ideas and improve methods of diagnosis and
treatment. Therefore machine learning is a promising
way to improve disease recognition.

More often for myocardial ischemia detection a
doctor makes a decision of myocardial ischemia type,
localization and degree using a 12-lead ECG, depend-
ing on a lead where pathology manifests itself most
clearly [4]. But for urgent diagnostics (for fast detection
myocardial infarction) much fewer leads can be used,
which can give the opportunity to detect myocardial
ischemia using portable ECG devices.

In recent years there are many types of research
linked with automatic heart disease detection in parti-
cular myocardial ischemia and infarction [6]. There are
several verified algorithms that can detect myocardial
ischemia using 12 and 6 leads [21].

The study is focused on the automated detection
of myocardial ischemia using one, two, or three ECG
leads. Manifestations of myocardial ischemia on the
ECG can be found in standard, amplified, and chest
leads [25].

The main aim of the research is to build reli-
able models for recognizing ischemic myocardial di-
sease using machine-learning methods including deci-
sion trees, random forest classifier, support vector
machines, 𝑘-nearest neighbors’ classifier, and gradient
boosting classifier. Principal component analysis and
𝑡-distributed stochastic neighbor embedding are used
as methods for visualizing high-dimensional data.

Machine learning methods are applied to solve the
problem of decreasing the number of the ECG leads
used for myocardial infarction detection. The expected
outcome of the proposed research is accurate detection
of myocardial ischemia and infarction using one, two
or three ECG leads.

The first stage of the study is preparing the dataset
with the sufficient number of the norm and ischemic
myocardial disease cases. The next step is determining
the set of the most informative features for classifi-
cation, which allow us not only to distinguish between
norm and pathology but also to decrease the number of
the used ECG leads. The final step is training and test-

ing of the developed models based on the considered
machine learning methods and features.

1 Materials and methods

For the study we used the publicly open ”PTB
(Physikalisch-Technische Bundesanstalt) Diagnostic
ECG database” from the PhysioNet/Computing in
Cardiology Challenge 2020 [5]. This database contains
22353 ECG records from 290 persons with 12 conventi-
onal ECG leads (I, II, III, aVR, aVL, aVF, and V1–V6)
together with 3 Frank leads (vx, vy, vz).

The average length of signals is 120 seconds. Age
range of the patients is from 17 to 87 years, with mean
value of 57.2. Among the patients 209 men (average
age is 55.5 years) and 81 women (average age is 61.1
years). Signals are digitized at 1000 samples per second,
with 16-bit resolution over a range of ±16.384 mV. The
distribution of illness shown in the Table 1.

Table 1 DISTRIBUTION OF ILLNESS IN THE
DATABASE

# Diagnostic class Number of subjects

1 Myocardial ischemia 148

2 Heart failure 18

3 Bundle branch block 15

4 Dysrhythmia 14

5 Myocardial
hypertrophy

7

6 Valvular heart disease 6

7 Myocarditis 4

8 Miscellaneous 4

9 Healthy controls 52

The result of the analysis of diagnostic classes shows
that the biggest amount of illnesses in the database
takes myocardial ischemia. 148 subjectswith myocardi-
al ischemia provide data representative enough for
building the machine-learning models for myocardi-
al ischemia detection. In the study we used only
myocardial ischemia and healthy controls diagnoses.
The imbalance between the ”normal” and ”ischemia”
classes was eliminated by equalizing the set of
observations. Each ECG record was splited into cardi-
ocycles. Each observation in the training and testing
datasets was formed by the features extracted from the
currently considered cardiocycle. The data sets were
balanced by removing extra observations in a random
order. Thus, we received 10,000 observations for the
each class of norm and pathology.

Detection of myocardial ischemia is usually based
on the evaluation of the following parameters [6]:

- ST segment elevation;
- QRS complex changes;
- changes in T wave;
- changes in QT interval;
- elevation angle of the ST segment;
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- elevation or depression of Q-onset;

- tangent of the elevation angle of the ST segment;

- ST segment area;

- other parameters presented in Fig. 1.

The mentioned above parameters are shown in
Fig. 1, where all the deviations are calculated relati-
vely to the isoelectric line. As we can see, the main
features for the ischemia detection are the parameters,
associated with the ST segment of ECG.

Fig. 1. Basic features for ECG myocardial ischemia
detection, where 1 — isoelectric line, 2 — elevation
angle of the ST segment, 3 — T wave offset, 4 — ST
segment area, 5 — Q onset, 6 — T wave amplitude

Detection of myocardial ischemia using the consi-
dered features has low accuracy due to the problem of
accurate detection of the angles, QRS points, slopes,
shifts, elevations [22]. Also the problem of accurate
definition of characteristic points of the cardiocycles
is a separate difficult task. Therefore to improve reli-
ability of the myocardial ischemia detection, we should
choose relative and integral indicators.

To bring the parameters of the different cardi-
ocycles of different patients into one range of values, it
was decided to use the primary processing implemented
by the scheme presented in Fig. 2.

ECG signals were filtered using a 5th order low-pass
Butterworth filter in the bandwidth of the necessary
ECG components 0-30Hz. The removal of the baseline
wander was carried out by high-frequency filtering with
the cutoff frequency 0.01Hz. The delay after filtering
the baseline drift with the Butterworth filter was eli-
minated using the forward-backward filtering method
[24]. Thus, the filtered signal has no delay relative to
the original. To increase the signal to noise ratio (SNR)
in noise recordings, the averaging of the consecutive
cardiocycles can be also applied.

Fig. 2. ECG signal standardization procedure

The removal of the DC component is carried out by
subtracting the average value from the signal. Signal
normalization is done by dividing each sample by the
maximum value in the sample:

𝑦𝑖𝑛𝑒𝑤
=

𝑦𝑖
𝑀𝐴𝑋[𝑦1, 𝑦2, . . . 𝑦𝑛]

,

where 𝑦𝑖 – original value, 𝑦𝑖𝑛𝑒𝑤 – new normalized value.
Also, when normalizing a long signal, noise or spikes

in amplitudes can destroy the normalization result. To
avoid distortions, the maximum value is taken as a
value in the range from 0.01 to 0.99 quantiles of the
distribution of signal sample values:

𝑦𝑖𝑛𝑒𝑤 =
𝑦𝑖

𝑀𝐴𝑋(𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒(0.01−0.99)[𝑦1, 𝑦2, . . . 𝑦𝑛])
.

This method can give an unexpected spread in the
calculated parameters, therefore, in short sections of
the signal, it is permissible to use normalization by the
maximum value [7].

The area under the curve of the ST segment was
calculated using the trapezoidal rule method [8], where
the total area is calculated as the sum of elementary
areas taken after a certain period of time ∆𝑡.

To evaluate the ST segment area contribution, a
parameter calculated as the ratio of the area under the
ST segment to the area under all the waves of the QRS
complex was used.

To express the balance of the phases of depolari-
zation and repolarization in the ECG signal, we used
a parameter calculated as the ratio of the area under
the T wave to the area under the P wave.

Also, the contribution of the T wave can be
evaluated as the spectral power of T wave. Thus, a
pathological increase or decrease in the contribution
of ventricular repolarization to the spectral power of
the signal shows the development of the pathological
activity in the myocardium.

To increase the stability of the considered
parameter, the spectral power of the ST segment was
normalized in its frequency range to the spectral power
of the filtered ECG signal in its entire frequency band.
Thus, the spectral contribution of the power of the ST
segment to the entire signal can be expressed by the
following formula:

𝑃𝑆𝑇 = 10

(︂
𝑃𝑠𝑝𝑒𝑐(𝑓1,𝑓2)

𝑃𝑠𝑝𝑒𝑐(0,𝑓𝑠/2)

)︂
,

where 𝑓1, 𝑓2 are the boundaries of the spectral range
of the ST segment, 𝑃𝑠𝑝𝑒𝑐 is sum of the power spectrum
values over a certain frequency range, 𝑓𝑠/2 is the
Nyquist frequency [9].

To obtain the spectral characteristics of the signal,
and to identify the spectral range of the T wave, it
was decided to use also a continuous wavelet transform
(CWT) as a suitable approach to extracting the power
in frequency bands of the EEG signal [26]. CWT
takes advantage of the fact that in the EEG signal
low-frequency signals are propagated over time while
high-frequency components occur at short intervals. To
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decompose the ECG signal into spectral components,
the Morlet wavelet was used, which makes it possible
to more accurately estimate the frequency distribution
of the ECG components on the scalogram [10]. To
improve the temporal resolution of the wavelet, the
sigma parameter, which is the scaling parameter that
affects the width of the Morlet wavelet window, was
chosen equal to 2.

Figure 3 shows the СWT scalogram of the ECG
signal in the norm. It can be noted that in the time
domain of the T wave, there is a power increase of the
spectrum in the range of 2-8 Hz. This range is the range
of the contribution of the T wave to the spectral power
of the signal.

Thus, for each сardiocycle the following list of the
features was calculated:

- area under the T wave;

- the ratio of the area under the T wave to the area
under the cardiac cycle;

- the ratio of the area under the T wave to the area
under the P wave;

- the ratio of the spectral power of a T wave to the
total spectral power of the cardiac cycle.

Fig. 3. Time-spectral representation of the ECG signal
in norm using the Morlet wavelet, and detection of the

frequency range of the T wave

According to the methods mentioned above,
preprocessing and normalization of the ECG signal
was carried out, which allows obtaining the features
for myocardial ischemia detection in the expected and
acceptable range of values. The resulting set of the
features should include the above parameters for each
analyzed lead. So for 12 leads 12x4 = 48 features, for 6
leads – 24 features for each cardio cycle are obtained.

The considered PTB Diagnostic ECG database
contains ECG recordings of some patients with
overlapping pathologies, for example, one patient
may have a myocardial infarction and one type of
arrhythmia, or even one or more comorbidities. For
more accurate training of the models for myocardial
ischemia detection, it was decided to drop out recor-
dings of the patients, who have other comorbidities
apart from myocardial ischemia.

For the separation of cardiac cycles, an ECG
detector was used, which detects the position of the
Rpeaks according to the Pan–Tompkins algorithm [20].
Detection of the redundant peaks in case of R wave
splitting is excluded by an additional check of the RR
interval length. Location of the characteristic points
of P,T waves in ECG was calculated according to
the scheme in Fig. 4. The intervals d1-d6 are used
in identifying the necessary components of the QRS
complex.

Fig. 4. Splitting the ECG signal into characteristic
intervals and the allocation of P and T waves

After detecting the R peaks in the ECG, the cardi-
ocycle selection procedure takes place, where starting
and ending points of the cardiocycle are determined
in accordance with the intervals 𝑑1, 𝑑2, where 𝑑1 =
0.5*RR, 𝑑2 = 0.95*RR, where RR is the interval
between adjacent R peaks.

The next step is the determination of the P and
Q peaks. The approximate location of the P and Q
peaks is determined at a distance 𝑑3, 𝑑4 from the R
peak, respectively. Next, the positions of the P and Q
waves are defined by finding the maximum values in
the intervals 𝑑5 and 𝑑6. At this stage, the intervals
𝑑3−𝑑6 are calculated as: 𝑑3 = 0.12*RR, 𝑑4 = 0.3*RR,
𝑑5 = 0.07*RR, 𝑑6 = 0.1*RR.

The ranges equal to 𝑑5/2 and 𝑑6/2, respectively, are
set aside in two directions from P and T peaks and the
minima for each of the ranges are searched and these
points are taken as the edges of the P and T waves.
Relative to the position of the P and T peaks as well
as their boundaries, the required areas are calculated
as features for myocardial ischemia recognition.

Thus, an intermediate database that contains
normal and pathological cardiocycles in the case of
myocardial ischemia was formed. As a result of the
signal processing 70,000 cardiocycles were obtained:
60,000 cases of pathology and 10,000 cases of norm.
To avoid skew in the characteristics of sensitivity and
specificity for the pathology and make equal the size of
the two classes, data were mixed and 50,000 of cardi-
ocycles were randomly removed from the pathology
group, thereby we obtained a balanced dataset of
cardiocycles with normal and pathological states.
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2 Machine learning for detection

of myocardial ischemia with

searching for the most

informative combinations of

features

After calculating the cardiocycle’s features in leads
I, II, III, AVR, AVL, AVF, V1-V6, the recursive feature
extraction was carried out in order to reduce the
number of features without losing a significant amount
of information. Support vector machine classifier was
used and expected reduction in features was from 48
to 12.

The following features were identified as the most
important after the recursive feature extraction:

- ratio of the spectral power of the T wave to the
total spectral power of the cardiac cycle (lead I);

- ratio of the area under the T wave to the area
under the P wave (lead I);

- ratio of the area under the T wave to the area
under the cardiac cycle (lead I);

- area under the T wave (lead II);

- ratio of the spectral power of the T wave to the
total spectral power of the cardiac cycle (lead II);

- area under the T wave (lead III);

- ratio of the spectral power of the T wave to the
total spectral power of the cardiac cycle (lead III);

- area under the T wave (lead III);

- the ratio of the spectral power of the T wave to the
total spectral power of the cardiac cycle (lead AVL);

- the ratio of the spectral power of the T wave to the
total spectral power of the cardiac cycle (lead AVF);

- the ratio of the area under the T wave to the area
under the cardiac cycle (lead AVF);

- area under T wave (lead AVF).

As we can see, all the features that were determined
by the recursive feature extraction algorithm relate to
the first three leads (I, II, III), and enhanced leads
(AVF, AVL), and the largest number of informative
features among all the selected features belongs to
the first three leads, of which it follows that it makes
sense to reduce the number of features by reducing the
number of analyzed leads from 12 to 6, removing leads
V1-V6 and leaving I, II, III, AVR, AVL, AVF. Thus,
the number of features was reduced from 12×4=48 to
6×4=24.

To visualize the differences between norm and
myocardial ischemia groups, as well as to analyze
the distinguishability of the two groups, a principal
component analysis (PCA) was carried out [12]. As
a result of PCA analysis, the number of features was
reduced from 24 to 3 for the possibility of visualization
in three-dimensional space. In Fig. 5 the results of the
PCA method and visualization in three-dimensional
space are presented.

Visualization of the principal components in three-
dimensional space shows that the two groups have the
sets of features that can be quite clearly separated from
each other; however, clusters of points belonging to a
certain class are not far apart in the feature space. The
points in the class ”norm” are scattered more widely in
feature space than in the class ”pathology”.

After reducing the number of features using PCA
analysis and obtaining the dispersion coefficient [23],
we found that the total variance of the three principal
components set does not exceed 35%. This shows that
three principal components are not enough to describe
the total variance ratio of the twenty-four feature set.

Fig. 5. Visualization of 3 principal components
(myocardial ischemia is shown in blue and norm in red)

Other way to visualize the norm and myocardial
ischemia groups is the t-distributed stochastic neigh-
bor embedding (TSNE) method, which non-linearly
projects a set of 24 features into a three-dimensional
space (Fig. 6).

After applying the TSNE analysis, we see that the
distribution of the points for the class ”norm” partially
intersects with the distribution of the points for the
class ”pathology”. But at the same time, they also
form distinct clusters that can describe significant di-
fferences between classes. Some pathology cases are
located at a distance from the majority of the other
pathology cases and form separate small islands, which
may indicate additional undetected pathologies.
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Fig. 6. Visualization of the features set after TSNE
analysis (myocardial ischemia is shown in blue and

norm in red)

To train the algorithms of machine learning, the
dataset was divided into two parts - training set (80%)
and test set (20%) with random data mixing.

To determine the best classification models
for myocardial ischemia detection, we implemented
supervised machine learning based on logistic regressi-
on, discriminant analysis, k-nearest neighbors method,
support vector machines (polynomial, Gaussian, sig-
moidal kernels), decision trees, random forest classi-
fiers, gradient boosting [15–17]. Each method was
evaluated on a different set of features to assess the
possibility of reducing the number of leads.

To reduce the number of features at first we
should pay attention to the possibility of excluding
the enhanced leads, since they correlate with standard
leads as obtained by their combinations. Then we
evaluated the performance of classification algorithms
for decreasing number of the standard leads.

The main purpose of such a reduction is to check
whether the classification algorithm can show classifi-
cation ability using only one, two or three ECG leads.
The evaluation of the classification algorithms shown
in the Table 2.

As a result of analyzing the accuracy of the classifi-
cation results of algorithms on different sets of features
we found, that with a feature set from the first three
leads and amplified leads, classification accuracy is 99%
with using the gradient boosting method and 98%
with the random forest method. Using of only three
standard leads shows a slight decrease in accuracy
comparing to 6 leads, but still remains to be high.
With a decreasing in the number of leads, removing
the features associated with amplified leads, we found
that the maximum accuracy for gradient boosting and

the random forest classifier dropped by only 1% and
amounted to 98% and 97%, respectively. When remov-
ing the third lead from the set of features, we also got
a drop in classification accuracy by 1%, at which the
accuracy for gradient boosting was 97% and for the
random forest classifier was 96%. But when switching
from using two leads to just one, the classification
accuracy deteriorated stronger, by 4% on average and
amounted to 92% for gradient boosting and 93% for
the random forest classifier.

The dependence of the classification accuracy of
different algorithms on the number of features varies
from 50% to 99% accuracy throughout the study. This
fact demonstrates that the features have a complex
distributed structure, and the groups are at a close
distance from each other in the feature space. This
can be seen on PCA and TSNE analyses distributi-
ons, therefore, linear classification methods showed
low accuracy. Regression models showed the lowest
accuracy. The best classifiers for the task of distin-
guishing between norm and myocardial ischemia are
gradient boosting, random forest classifier, decision
trees, and k-nearest neighbors classifier.

Analysis of the classification accuracy shows that
when moving from two leads (I, II) to one (I), the
drop in classification accuracy is the strongest. This
indicates that II lead contains important information
for classification. After reducing the leads number from
six (I, II, III, AVR, AVL, AVF) to three (I, II, III),
a weaker decrease in accuracy is observed, in spite of
a sharp halving in the number of features. Reducing
the leads number from three (I, II, III) to two leads
(II, III) demonstrates the smallest drop in accuracy,
which suggests that either II, III leads carry similar
information for classification or lead III contains little
information for detecting ischemic illness.

Two best estimators, random forest classifier and
gradient boosting classifier, were also combined in
a stacking algorithm. As a result, a classification
accuracy of 98.6% was obtained, which is slightly lower
than with the direct use of gradient boosting.

To compare the stability of the models on a set of
features from (I, II, III, AVR, AVL, AVF), a five-step
cross-validation was carried out [19], which gave the
following results:

- for the stacking algorithm, 99% accuracy was
obtained with a standard deviation of 0.004% (0.9858,
0.9819, 0.98645, 0.98795, 0.98705)

- for the gradient boosting algorithm, 99% accuracy
was also obtained with a standard deviation of 0.0047%
(0.98856, 0.98253, 0.98525, 0.9858, 0.9834)

- for stacking and direct random forest use in the
case of using a single lead (I), cross-validation results
show the average accuracy of 93% with the same low
standard deviation of 0.0012%.

As a result, we can conclude that the obtained
models are quite stable on different combinations
of data, and demostrate high accuracy with a low
standard deviation.



Виявлення iшемiї мiокарду за допомогою зменшеної кiлькостi вiдведень ЕКГ 45

Table 2 EVALUATION OF THE CLASSIFICATION ALGORITHMS PERFORMANCE DEPENDING ON
THE NUMBER OF LEADS SELECTED (TOTAL CLASSIFICATION ACCURACY AND TRUE POSITIVE
RATE FOR NORM AND MYOCARDIAL ISCHEMIA CLASSES IN PARENTHESES)

Machine

learning method

I, II, III,

AVR, AVL,

AVF

I, II, III I, II I

Logistic regression
0.782

(0.792, 0.772)
0.755

(0.791, 0.7189)
0.737

(0.751, 0.723)
0.736

(0.745, 0.727)

Discriminant analysis
0.778

(0.787, 0.768)
0.749

(0.799, 0.698)
0.733

(0.765, 0.700)
0.732

(0.755. 0.709)

k-nearest neighbors (n=3)
0.945

(0.913, 0.977)
0.942

(0.915, 0.968)
0.941

(0.898, 0.983)
0.881

(0.856, 0.906)

Support vector machines
(polynomial kernel)

0.868
(0.792, 0.944)

0.821
(0.707, 0.935)

0.802
(0.628, 0.976)

0.724
(0.499, 0.949)

Support vector machines
(Gaussian kernel)

0.914
(0.996, 0.832)

0.957
(0.970, 0.944)

0.948
(0.944, 0.952)

0.884
(0.810, 0.958)

Decision tree (depth=4)
0.830

(0.735. 0.925)
0.812

(0.733, 0.891)
0.822

(0.690, 0.954)
0.778

(0.671, 0.885)

Decision tree (depth=7)
0.883

(0.828, 0.938)
0.882

(0.817, 0.947)
0.870

(0.763, 0.976)
0.817

(0.737, 0.897)

Decision tree (depth=10)
0.914

(0.871, 0.957)
0.909

(0.862, 0.956)
0.908

(0.832, 0.984)
0.861

(0.817, 0.904)

Random forest (10 trees in
the forest)

0.972
(0.968, 0.975)

0.969
(0.971, 0.967)

0.961
(0.956, 0.966)

0.927
(0.908, 0.946)

Random forest (20 trees in
the forest)

0.978
(0.979, 0.978)

0.974
(0.977, 0.971)

0.962
(0.958, 0.966)

0.927
(0.905, 0.950)

Random forest (30 trees in
the forest)

0.983
(0.979, 0.987)

0.973
(0.975, 0.971)

0.962
(0.954, 0.970)

0.929
(0.898, 0.960)

Gradient boosting
0.988

(0.986, 0.99)
0.980

(0.982, 0.978)
0.972

(0.964, 0.980)
0.920

(0.885, 0.955)

Stacking
0.988

(0.986, 0.992)
0.980

(0.981, 0.979)
0.972

(0.965, 0.979)
0.920

(0.911, 0.929)

To visualize the errors of the algorithm, a confusion
matrix [18] is shown in Fig. 7.

Fig. 7. Confusion matrix for the myocardial ischemia
recognition algorithm for six leads I, II, III, AVR, AVL,

AVF

As can be seen from the confusion matrix, the
model has a fairly balanced number of true positive
(99.23%), true negative (98.59%), and false positive
(1.41%) and false negative (0.77%) predictions. As for
confusions, the bias towards false positive predictions
plays into our hands, since it is more important to
predict the pathology and exclude it if necessary than
to miss it. Sensitivity (0.985), Specificity (0.988), and
F1 (0.987) scores indicate high classification accuracy
and low type I and type II errors.

Conclusion

In this work, methods and approaches for identi-
fying, applying and reducing features for classificati-
on of myocardial ischemia were investigated, and a
study of the classification accuracy for different classi-
fiers for different combinations of features was carried
out. As a result, it was shown that using machi-
ne learning methods makes it possible to classify
ischemic myocardial disease with 98% accuracy using
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only three standard leads and 93% accuracy using
only one lead. The methods for obtaining the features
for myocardial ischemia detection were described in
details. The technique for determining the proposed
features, namely: the ratio of the area under T wave
to the area under the P wave, as well as the ratio
of the area under T wave to the area of the entire
cardiac cycle, was considered. These features together
with other calculated parameters gave a high accuracy
of the classification of the norm and pathology since
they arise from the bioelectrical processes that reflect
on the surface ECG. Analysis of confusion matrices
obtained for the best classifiers and feature sets showed
a low probability of classification errors of the normal
and pathology classes. The number of correct decisi-
ons of the obtained models turned out to be quite
balanced for norm and myocardial ischemia cases.
Therefore the probability of making type I and type
II errors is low. PCA and TSNE analysis showed that
the calculated features do not have sufficient spati-
al distance in the distribution between groups. The
obtained results demonstrate the ability to detect the
ischemic myocardial disease using the reduced number
of leads. Obtained classification accuracy of 99% for 6
leads (I, II, III, AVR, AVL, AVF) and 93% for one lead
(I) makes it possible to implement the obtained models
and the proposed features in the medical devices.
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Виявлення iшемiї мiокарду за допо-
могою зменшеної кiлькостi вiдведень
ЕКГ

Мневець А. В., Iванушкiна Н. Г., Iванько К. О.

Дослiдження присвячено аналiзу електрокардiогра-
фiчних (ЕКГ) ознак для розпiзнавання станiв норми i
iшемiї мiокарда у разi зменшеного набору електрокар-
дiографiчних вiдведень. Зокрема, для виявлення iшемiї
мiокарда розглядаються спектральнi ознаки електро-
кардiографiчного сигналу та характеристики форми
ЕКГ хвиль. В статтi описанi основнi ознаки, якi зазви-
чай використовуються для виявлення iшемiї мiокарда,
а також запропонованi iншi бiльш надiйнi показники
для застосування у класифiкацiйних моделях. Детально
описано пiдхiд до попередньої обробки ЕКГ сигналу,
iдентифiкацiї необхiдних сегментiв сигналу i подальшо-
го розрахунку ознак. Розглянутi ознаки заснованi на
площах пiд характерними хвилями ЕКГ сигналу i спе-
ктральних параметрах цих хвиль. Описано та обрано
найбiльш iнформативнi ознаки для виявлення iшемiї
мiокарда, отриманi з початкового набору параметрiв, що
призвело до зниження кiлькостi ЕКГ вiдведень до 6 у
порiвняннi з 12 вiдведеннями стандартної електрокар-
дiограми. Запропоновано методики визначення нових
ознак, а саме: вiдношення площi пiд хвилею Т до площi
пiд хвилею Р, а також вiдношення площi пiд Т хви-
лею до площi кардiоциклу. Цi ознаки разом з iншими

розрахованими параметрами показали високу точнiсть
класифiкацiї сигналiв на норму та патологiю, оскiльки
вони вiдображають бiоелектричнi процеси, що протiка-
ють за наявностi iшемiї мiокарда та проявляються на
поверхневiй ЕКГ. Також було проведено аналiз вiзуалi-
зацiї даних за допомогою методу головних компонент
та t-розподiленого стохастичного вбудовування сусiдiв.
Це дозволило показати розподiл даних у просторi ознак,
що характеризують класи норми та патологiї. Данi ЕКГ
сигналiв у нормi та у випадку iшемiї мiокарда були отри-
манi з бази даних «PTB Diagnostic ECG Database». Ця
база даних мiстить 22353 ЕКГ сигнали з наявнiстю 12
ЕКГ вiдведеннь (I, II, III, aVR, aVL, aVF та V1–V6),
зареєстрованих з високою роздiльною здатностю у 290
осiб. З використанням розглянутої бази даних отримано
по 10 000 кардiоциклiв для класiв норми та iшемiї мiо-
карда, якi застосовано для побудови моделей машинного
навчання. На основi отриманих ознак було виконано
дослiдження алгоритмiв машинного навчання та розра-
хована точнiсть для рiзних комбiнацiй вiдведень ЕКГ.
В результатi перехресної перевiрки, точнiсть виявлення
iшемiї мiокарда склала 99% зi стандартним вiдхиленням
0,4% для 6 вiдведень (I, II, III, AVR, AVL, AVF) та 93% зi
стандартним вiдхиленням 0,12% для одного вiдведення
(I). Таким чином, було показано, що за допомогою мето-
дiв машинного навчання можна розпiзнавати iшемiчну
хворобу мiокарда з високою точнiстю, використовую-
чи шiсть стандартних вiдведень ЕКГ або лише одне
вiдведення ЕКГ.

Ключовi слова: iшемiя мiокарда; машинне навчан-
ня; кардiоцикл; кардiоiнтервал; вейвлет-аналiз; площа
T хвилi; кросс-валiдацiя; виявлення захворювань серця
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