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This study has presented an algorithm for assembling, solving, and analyzing the results obtained by
mathematical modeling of the disc piezoelectric transducers, which are widely used in hydroacoustics,
microelectronics, microcircuit engineering (for example, as components of receiving antennas of hydroacoustic
communication devices). The models developed in this study enable us to establish dependencies, which
represent a mathematical description of the electroacoustic connection between the wave fields in different
sections of the disc piezoelectric transducers. Analytical dependences obtained by mathematical modelling
make it possible to establish the electrical impedance and quality factor together with the amplitude values
of the electric charge and current on the electroded surfaces of the piezoelectric disk, subject to the inverse
piezoelectric effect conditions. A complete calculation of the problem of harmonic radial oscillations of
disc piezoelectric transducers allowed the authors to significantly expand the list of physical and mechanical
parameters of the piezoelectric material, which had been previously determined experimentally. The research
has revealed the dependence of the change in electrical impedance on the values of the electromechanical
coupling coefficient, the wave number of elastic oscillations, and the Voigt indices. The study has also
determined a high agreement between the electric impedance modules of discs made of lead zirconate titanate
PZT piezoelectric ceramics with and without the piezoelectric effect (the difference between the impedance
values in these cases did not exceed 18%).
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Introduction

Piezoelectric components and equipment designed
with piezoelectric components have found multiple
applications in modern science and technology [1].
Indeed, literally every research and technology fi-
eld benefits from applying piezoelectric transducers
nowadays. This fact is due to their high accuracy, reli-
ability, manufacturability, multifunctionality, as well as
their ability to miniaturize and integrate with various
microelectronic and micromechanical components.

Energy independence from external sources may
become an absolute advantage of piezoelectric
components in the near future. Moreover, in some
cases, piezoelectric components, when being an element
of a device, can generate electric current for other
electronic components of the same device [2].

At the same time, having analyzed the market
of modern piezoelectric transducers (according to
marketing research of the companies taking the lead in
manufacturing piezoelectric components intended for
various purposes, such as: Zhejiang Jiakang Electronics
Co., Changzhou Keliking Electronics Co., PI Ceramic
GmbH and others [3, 4]) we have established that a
considerable share (about 56%) of the entire variety of

form factors of piezoelectric transducers is accounted
for disc piezoelectric transducers. This share amounts
to nearly 615 million US dollars as of the third quarter
of 2022.

However, further developments in the technologi-
cal base of piezoelectric transducers with introducing
expanded functional capabilities would not be possi-
ble without strengthening the scientific and theoretical
foundations of piezoelectric technology by improving
methodical, technological, and mathematical support.

Improvements in the mathematical support that
underlies the piezoelectric transducers development
theory, followed by their applied implementation
as ready-made components, offer new methods to
calculate, design and model disk-shaped piezoelectric
transducers [5].

1 Relevance of the research

based on the publication

analysis results

Disk piezoelectric transducers serve as sound-
receiving and sound-radiating devices, various
sensors, and as components of receiving antennas
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in hydroacoustic communication devices [6, 7]. As
indicated in the studies [8, 9], the standard design
of piezoelectric stack transducers, as a rule, involves
compiling disk elements into a single design, which
expands the functional properties of such type of multi-
array transducers, hence improving the operational
properties of devices where these transducers are used.
The study [8] presents findings related to the functional
features of a new three-layer circular piezoelectric
transducer, and first introduces an analytical model
containing closed-form equations, which are important
tools for predicting and optimizing the transducer’s
operation. Employing hence both the plate theory and
the constitutive equations of piezoelectric materials,
an analytical formula was found to describe the
deflection of the transducer as a function of electri-
cal loads (electromechanical characteristics of the
transducer). The authors have conducted verification
tests to demonstrate that the results obtained with
the developed solution correspond satisfactorily to
both literature and numerical data. Based on the
obtained analytical model, the influence of selected di-
mensionless variables on the transducer’s performance
has been investigated. It has been demonstrated that
parameters including the dimensions and mechanical
properties of the piezoelectric disc significantly affect
the transducer’s performance. In addition, the authors
of the study [9] discuss the results of investigating
piezoelectric stack transducers connected in varied
sequences. Designing and developing piezoelectric
matrix options were implemented for series, parallel,
series-parallel, and parallel-series connections of pi-
ezoelectric transducers. Modeling these options and
analyzing the obtained results were conducted with the
electronic circuit simulation software package PSIM.
Verification of the simulation results has confirmed the
feasibility to determine such operating modes of the
piezoelectric matrix that provide the optimal output
power, which can satisfy the minimum energy requi-
rement for powering the device with the considered
variant of the configuration of piezoelectric components
with low load.

A number of surveys, namely those conducted
by C. Bazilo, O. Petrishchev, I. Yanchevskiy, A.
Zagorskis and others, focus on theoretical and appli-
ed research of piezoelectric technology and investigate
the physical processes that occur in disk piezoelectric
transducers with differently shaped electrodes [10–12].
For example, in the study [10], piezoelectric sensors
for environmental monitoring are modeled and investi-
gated. This analysis proves the absence of reliable and
well-founded methods to build mathematical models
of disc piezoelectric transducers, which could be used
as a theoretical basis for calculating the characteristics
and parameters of this class of functional components
used in modern piezoelectric electronics. Analysis
and further COMSOL Multiphysics software platform
modeling of the physical processes that occur in

piezoelectric transducers have established a signifi-
cant expansion of the range of their mechanical
characteristics and an increase in sensitivity when
using these transducers in environmental monitoring
tasks. Surveys such as [11, 12] undertake research
of electromechanical and energy characteristics of pi-
ezoceramic elements during radial movements, which
occur when their operating frequencies are close to
resonance/anti-resonance values.

At the same time, the studies [13, 14] that focus
on the possibility of modeling variously shaped pi-
ezoelectric transducers using equivalent circuits have
demonstrated that it is impossible to consider mechani-
cal processes and phenomena in piezoceramics, while
establishing a connection between these processes and
the electromechanical characteristics of piezoceramic
material is complicated.

Thus, having analyzed the above-mentioned scienti-
fic publications, along with a number of publications
[15–18] dedicated to the mathematical description of
physical processes in piezoelectric disc transducers, the
authors of this article established the absence of unified
mathematical models of piezoelectric disc actuators.
Any clear sequence of calculating their technical and
operational characteristics is also absent.

Therefore, we consider development of a
mathematical model of piezoelectric disc transducers
and experimental confirmation of the results obtained
with the help of the developed models as a topical
problem, the solution of which is the main goal of this
research.

2 Problem statement for

modelling of a thin piezo-

ceramic disk in the mode of

thickness oscillations

Figure 1 demonstrates a disc with PZT-type pi-
ezoceramics polarized in direction Ox3. Its surfaces
𝑥3=0; 𝑥3=−𝛼 are metallized [19]. The surface 𝑥3=−𝛼
has zero potential, and the potential Φ (𝑡) = 𝑈0𝑒

𝑖𝜔𝑡

is supplied to the surface 𝑥3 = 0 from an external
generator, where 𝑈0 is the voltage amplitude; 𝑖 =

√
−1;

𝜔 is the circular frequency of the charge sign reversal
in the electric potential; 𝑡 is time.

We consider the disk sufficiently thin, i.e., the
strong inequality 𝛼/𝑅 ≪ 1 takes place. Apart from
that, we consider that the disk is isolated from any
mechanical contacts with other material objects. For
definiteness, we assume that the disk is in vacuum.
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Fig. 1. Calculation scheme of a piezoceramic disk

The action of an externally applied electric potenti-
al difference induces an external electric field in the
disk, which acts on the piezoceramic ions through
the Coulomb forces, which means that an inverse pi-
ezoelectric effect appears in the volume of the disk.
Here we assume that the frequency 𝜔 is such that the
spatial inhomogeneity scale of the stress-strain state
in the disk is commensurate with its thickness. Since
the inequality 𝛼/𝑅 ≪ 1 is satisfied, one can safely
neglect the influence of the lateral disk boundary on the
characteristics and parameters of its stress-strain state
and consider that the displacement vector �⃗� (𝑥𝑘) of the
material particles in the piezoceramics is determined
on average by the axial component 𝑢3. If we take into
consideration that the component 𝑢3 solely depends on
the coordinate 𝑥3, then the real stress-strain state of
the disk is reduced to a uniaxial deformed state. A uni-
axial deformed state is a stress-strain state of an elastic
body in which the strain tensor has only one nonzero
component. In the model situation formulated above,
such a component is the quantity 𝜀33 = 𝜕𝑢3/𝜕𝑥3 . The
two components that define compression and tension
along the axes Ox1 and Ox2, that is, along the radial
and circumferential axes of the cylindrical coordinate
system, are equal to zero.

Under the above conditions, the electrical
impedance 𝑍𝑒𝑙(𝜔) of a disk oscillating through its
thickness should be determined.

3 Construction of a mathemati-

cal model of thin piezoceramic

disk in the mode of thickness

oscillations

As a rule [20], qualitative and quantitative
parameters of the stress-strain state of an oscillating
piezoceramic element are determined before calculat-
ing the electric current in the conductor that connects
the disk’s electroded surface to the electric potential
generator (Fig. 1). To perform these estimates, we note
the generalized Hooke’s law in the inverse formulation
[21]

𝜀𝑖𝑗 = 𝑠𝐸𝑖𝑗𝑘𝑙𝜎𝑘𝑙 + 𝑑𝑘𝑖𝑗𝐸𝑘, (1)

which we obtain from the Taylor’s expansions of the
functions 𝜀𝑖𝑗 , 𝐷𝑚 and 𝑆, with independent variables
𝜎𝑘𝑙, 𝐸𝑘 and 𝑇 . The symbol 𝑠𝐸𝑖𝑗𝑘𝑙 in expression (1)
denotes the component of the piezoceramics’ elastic
compliance tensor. The symbol 𝑑𝑘𝑖𝑗 denotes the pi-
ezoelectric charge modulus. There exist clearly defined
relations between the 𝑠𝐸𝑖𝑗𝑘𝑙 and 𝑑𝑘𝑖𝑗 values, as well as

between the elastic moduli 𝑐𝐸𝑖𝑗𝑘𝑙 and the piezoelectric
moduli 𝑒𝑘𝑖𝑗 . These relations shall be noted as follows

𝑐𝐸𝛼𝛽𝑠
𝐸
𝛽𝛾=𝛿𝛼𝛾 , 𝑑𝑘𝛽=𝑒𝑘𝛼𝑠

𝐸
𝛼𝛽 , (2)

where 𝛼, 𝛽, 𝛾 are Voigt indices; 𝛿𝛼𝛾 is the Kronecker
symbol.

From relation (1) it follows that

𝜀1=𝑠𝐸11𝜎1+𝑠𝐸12𝜎2+𝑠𝐸13𝜎3+𝑑31𝐸3=0, (3)

𝜀2=𝑠𝐸21𝜎1+𝑠𝐸22𝜎2+𝑠𝐸23𝜎3+𝑑32𝐸3=0, (4)

𝜀3=𝑠𝐸31𝜎1+𝑠𝐸32𝜎2+𝑠𝐸33𝜎3+𝑑33𝐸3 ̸=0. (5)

In relations (3)–(5), the notation with Voigt indices
is used for the components of strain and stress tensors.
Shear deformations 𝜀𝛽 (𝛽 = 4, 5, 6) due to the physical
content of the problem identification are equal to zero.

Since matrices 𝑠𝐸𝛼𝛽 and 𝑑𝑘𝛼 are similar to matrices

𝑐𝐸𝛼𝛽 and 𝑒𝑘 in their structure and the relations between
the matrices’ elements, it follows that 𝑑31=𝑑32. In this
case, it follows from equations (3) and (4) that

𝜎1=𝜎2=− 𝑑31
𝑠𝐸11+𝑠𝐸12

𝐸3−
𝑠𝐸13

𝑠𝐸11+𝑠𝐸12
𝜎3. (6)

Substituting the stresses 𝜎1 and 𝜎2 determined by
expression (6) into relation (5), we obtain the notation

𝜀3=
𝜎3

𝑀𝐸
+

[︂
𝑑33−2

𝑠𝐸13𝑑31
𝑠𝐸11+𝑠𝐸12

]︂
𝐸3, (7)

where 𝑀𝐸 is the elastic modulus for the uniaxial
deformed state mode (compression – tension through
the thickness) of the disk. Wherein

1

𝑀𝐸
= 𝑠𝐸33 −

2
(︀
𝑠𝐸13

)︀2
𝑠𝐸11 + 𝑠𝐸12

. (8)

Generally, we can note the Hooke’s law (7) as
follows

𝜎3 = 𝑀𝐸𝜀3 − 𝑒(𝜀)𝐸3, (9)

where

𝑒(𝜀) =

[︂
𝑑33 − 2

𝑠𝐸13𝑑31
𝑠𝐸11 + 𝑠𝐸12

]︂
𝑀𝐸 . (10)

We assign the value 𝑒(𝜂) to represent the pi-
ezoelectric modulus for the mode of uniaxial compressi-
on – tension of the disk.

Here we determine the quantities 𝑀𝐸 and 𝑒(𝜂)
through the elastic moduli 𝑐𝐸𝛼𝛽 and the piezoelectric
modules 𝑒𝑘𝛼.



40 Bazilo C. V., Bondarenko M. O., Usyk L. M., Faure E. V., Kovalenko Yu. I.

The elastic moduli 𝑐𝐸𝛼𝛽 matrix for a polarized
through the thickness PZT-piezoceramic plate is noted
as follows

⃒⃒
𝑐𝐸𝛼𝛽

⃒⃒
=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
𝑐𝐸11 𝑐𝐸12 𝑐𝐸13 0 0 0

𝑐𝐸22 𝑐𝐸23 0 0 0
𝑐𝐸33 0 0 0

𝑐𝐸44 0 0
𝑐𝐸55 0

𝑐𝐸66

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒ , (11)

where 𝑐𝐸11 = 𝑐𝐸22; 𝑐
𝐸
13 = 𝑐𝐸23 and 𝑐𝐸44 = 𝑐𝐸55.

The elements of the elastic compliance matrix 𝑠𝐸𝜆𝜇
are calculated from the elements 𝑐𝐸𝛼𝛽 of the elastic
moduli matrix in the following notation

𝑠𝐸𝜆𝜇 = (−1)
𝜆+𝜇𝑀𝜆𝜇

∆0
, (12)

where 𝑀𝜆𝜇 is the algebraic cofactor at the element
𝑐𝐸𝜆𝜇 that is located at the crosshairs of the 𝜆-th row

and the 𝜇-th column; ∆0 = 𝑐𝐸11

[︁
𝑐𝐸11𝑐

𝐸
33 − 2

(︀
𝑐𝐸13

)︀2]︁ −

𝑐𝐸12

[︁
𝑐𝐸12𝑐

𝐸
33 − 2

(︀
𝑐𝐸13

)︀2]︁
defines the matrix (11).

The elastic compliances included into the definiti-
ons of 𝑀𝐸 and 𝑒(𝜂) are determined in accordance with
expression (12) as follows

𝑠𝐸11=
[︁
𝑐𝐸11𝑐

𝐸
33−

(︀
𝑐𝐸13

)︀2]︁
/∆0;

𝑠𝐸12=−
[︁
𝑐𝐸12𝑐

𝐸
33−

(︀
𝑐𝐸13

)︀2]︁
/∆0;

𝑠𝐸13=
[︀
𝑐𝐸12𝑐

𝐸
13−𝑐𝐸13𝑐

𝐸
11

]︀
/∆0;

𝑠𝐸33=
[︁(︀
𝑐𝐸11

)︀2−(︀
𝑐𝐸13

)︀2]︁
/∆0.

(13)

Substituting relations (13) into the definition (8) of
the elastic modulus𝑀𝐸 results in the following relation

𝑀𝐸=
𝑐𝐸33∆0(︀

𝑐𝐸11−𝑐𝐸12
)︀ [︁

𝑐𝐸33
(︀
𝑐𝐸11+𝑐𝐸12

)︀
−2

(︀
𝑐𝐸13

)︀2]︁ . (14)

According to the expression (2), the piezoelectric
moduli 𝑑31 and 𝑑33 are defined by the following relati-
ons

𝑑31=𝑒3𝛼𝑠
𝐸
𝛼1=𝑒31

(︀
𝑠𝐸11+𝑠𝐸21

)︀
+𝑒33𝑠

𝐸
31;

𝑑33=𝑒3𝛼𝑠
𝐸
𝛼3=𝑒31

(︀
𝑠𝐸13+𝑠𝐸23

)︀
+𝑒33𝑠

𝐸
33.

(15)

When noting the relations (15), we considered the
notation of the piezoelectric moduli matrix 𝑒𝑘𝛼

|𝑒𝑘𝛼| =

⃒⃒⃒⃒
⃒⃒ 0 0 0 0 𝑒15 0
0 0 0 𝑒24 0 0
𝑒31 𝑒32 𝑒33 0 0 0

⃒⃒⃒⃒
⃒⃒ , (16)

where 𝑒31 = 𝑒32 and 𝑒15 = 𝑒24.
Substituting expressions (13), (14) and (15) into

the definition (10) of the piezoelectric modulus 𝑒(𝜂) we
come to the conclusion that 𝑒(𝜂) = 𝑒33. If we assume
that 𝑐𝐸12 = 𝑐𝐸13 (a transversely isotropic elastic medi-
um), from expression (14) it follows that 𝑀𝐸 = 𝑐𝐸33.

Thus, under uniaxial compression – tension of a
polarized through thickness piezoceramic plate (disk)
with the elastic properties of a transversally isotropic
solid (𝑐𝐸12 = 𝑐𝐸13), the following notation of the generali-
zed Hooke’s law can be used

𝜎3 = 𝑐𝐸33𝜀3 − 𝑒33𝐸3. (17)

In order to determine the resulting electric fi-
eld strength 𝐸3 that we have in the relation (17),
we consider the condition when free electricity carri-
ers are absent in the volume of the deformable pi-
ezoceramic. For the case under consideration, we
obtain 𝜕𝐷3/𝜕𝑥3 = 0 from the general formulation of

this condition 𝑑𝑖𝑣 �⃗� = 0, where 𝐷3 = 𝑒33𝜀3 + 𝜒𝜀
33𝐸3.

Since 𝜀3 = 𝜕𝑢3/𝜕𝑥3 and 𝐸3 = −𝜕Φ/𝜕𝑥3 , where Φ is
the electric potential of the resulting field within the
volume of the deformable piezoelectric, we note the
expression for the vertical component of the electric
induction vector

𝐷3 = 𝑒33
𝜕𝑢3

𝜕𝑥3
− 𝜒𝜀

33

𝜕Φ

𝜕𝑥3
, (18)

where 𝐷3,𝑢3 and Φ are amplitude values of harmoni-
cally time-varying quantities.

The vertical component 𝐷3 of the electric induction
vector does not depend on the values of the coordinate
𝑥3. Therefore, by integrating the left and the right
parts of relation (18) with respect to the variable 𝑥3

within the range from −𝛼 to 0, we obtain

𝐷3=
𝑒33
𝛼

[𝑢3 (0)−𝑢3 (−𝛼)]−𝜒𝜀
33

𝛼
[Φ (0)−Φ (−𝛼)] . (19)

Obviously, the closing square bracket in the formula
(19) is equal to the amplitude of the electric potential
𝑈0 (Fig. 1) supplied to the electroded surface 𝑥3 = 0
from an electrical signal generator. Therefore

𝐷3=
𝑒33
𝛼

[𝑢3(0)−𝑢3 (−𝛼)]−𝜒𝜀
33

𝛼
𝑈0. (20)

By substituting the right side of the expression (20)
into the left side of the above definition of the quantity
𝐷3 we obtain

𝑒33
𝜕𝑢3

𝜕𝑥3
+𝜒𝜀

33𝐸3=
𝑒33
𝛼

[𝑢3(0)−𝑢3 (−𝛼)]−𝜒𝜀
33

𝛼
𝑈0,

whence it follows that

𝐸3=− 𝑒33
𝜒𝜀
33

𝜕𝑢3

𝜕𝑥3
+

𝑒33
𝛼𝜒𝜀

33

[𝑢3(0)−𝑢3 (−𝛼)]−𝑈0

𝛼
. (21)

In the formula (21) for calculating the vertical
component of the resulting electric field strength
vector, the first two terms determine the internal
electric field that arises in the volume of the deformable
piezoceramic due to the ions being displaced from the
equilibrium position. The third term determines the
strength of the electric field created by an external
source, that is, the electrical signal generator.
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Substituting the relation (21) into the generalized
Hooke’s law (17) produces

𝜎3=𝑐𝐷33
𝜕𝑢3

𝜕𝑥3
− 𝑒233
𝛼𝜒𝜀

33

[𝑢3(0)−𝑢3 (−𝛼)]+
𝑒33
𝛼

𝑈0, (22)

where 𝑐𝐷33 = 𝑐𝐸33
(︀
1 +𝐾2

3

)︀
is the elasticity modulus in

the mode of electric induction constancy (equal to
zero); 𝐾2

3 = 𝑒233/
(︀
𝜒𝜀
33𝑐

𝐸
33

)︀
is squared electromechanical

coupling coefficient in the mode of thickness oscillati-
ons in a polarized through thickness piezoceramic
disk. ForPZT-type piezoceramics, its value is𝐾2

3 ≤ 0, 5.
The elasticity modulus 𝑐𝐷33 counts in the consis-
tent (coherent) action of elastic forces and Coulomb
forces in the volume of the deformable piezoelectric.
Therefore, 𝑐𝐷33 > 𝑐𝐸33.

The amplitudes of both the stress tensor 𝜎3 and the
displacement vector 𝑢3 components that vary harmoni-
cally in time must satisfy Newton’s second law in
differential form, which, as applied to the situation
under consideration, is a notation

𝜕𝜎3

𝜕𝑥3
+ 𝜌0𝜔

2𝑢3 = 0∀𝑥𝑘 ∈ 𝑉, (23)

where 𝜌0 is density; 𝑉 denotes the volume of the
piezoceramic disc.

By substituting the definition (22) of the resulting
voltage 𝜎3 into the equation (23) we compose

𝜕2𝑢3

𝜕𝑥2
3

+ 𝛾2𝑢3 = 0∀𝑥𝑘 ∈ 𝑉, (24)

where 𝛾 = 𝜔/
√︀
𝑐𝐷33/𝜌0 is the wave number of elastic

vibrations in the volume of the piezoceramic disk.
Indeed, the solution of the equation (24) is

𝑢3 = 𝐴 cos 𝛾𝑥3 +𝐵 sin 𝛾𝑥3, (25)

where 𝐴 and 𝐵 are the constants to be defined from the
boundary conditions, which in their physical essence
represent Newton’s third law in differential form.

With regard to the problem being solved, it then
follows that

𝜎3|𝑥3=(0,−𝛼) = 0∀𝑥𝑘 ∈ 𝑆, (26)

where 𝑆 denotes the metallized surfaces 𝑥3 = (0 ; −𝛼)
(Fig. 1) of the oscillating disk.

Let expression (25) for calculating the amplitude
of the displacement vector’s vertical component 𝑢3 be
substituted into the definition (22) of the stress tensor
component 𝜎3 amplitude harmonically varying in time.
In the result obtained, we equate the coordinate value
to zero first, and then assign 𝑥3 = −𝛼, we equate the
expressions obtained to zero, as required by condition
(26). In this case we obtain a system of two algebraic
equations that contain the two required coefficients, 𝐴
and 𝐵.

The indicated system of equations is solved with
respect to the required coefficients 𝐴 and 𝐵 in a unique

way. The final result of solving this system of equations
is the notation

𝐴 = −𝑒33𝑈0

𝑐𝐷33Λ
· (1−cos 𝛾𝛼)

𝛾𝛼
;

𝐵 = −𝑒33𝑈0

𝑐𝐷33Λ
· sin 𝛾𝛼

𝛾𝛼
,

(27)

where Λ=sin 𝛾𝛼
[︁
1− 𝐾2

3

1+𝐾2
3
· 𝑡𝑔(𝛾𝛼/2 )

(𝛾𝛼/2 )

]︁
=sin 𝛾𝛼 · Λ0.

It then follows that the amplitudes of the
harmonically time-varying displacements 𝑢3 of the pi-
ezoceramic disk’s material particles, which satisfy the
fundamental laws of mechanics, i.e., Newton’s second
and third laws, are to be determined by the following
expression

𝑢3=−𝑒33𝑈0

𝑐𝐷33Λ

[︂
(1−cos 𝛾𝛼)

𝛾𝛼
cos 𝛾𝑥3+

sin 𝛾𝛼

𝛾𝛼
sin 𝛾𝑥3

]︂
.

(28)
Substituting expression (28) into definition (20) of

the vertical componentwe obtain

𝐷3 = −𝜒𝜀
33𝑈0

𝛼Λ0
,

where Λ0 = 1− 𝐾2
3

1+𝐾2
3
· 𝑡𝑔(𝛾𝛼/2 )

(𝛾𝛼/2 ) .

The amplitude value 𝐼0 of the electric current
harmonically changing in time within the conductors
is determined through the value 𝐷3

𝐼0 = −𝑖𝜔𝑆𝐷3 = 𝑖𝜔𝐶𝜀
0

𝑈0

Λ0
, (29)

where 𝐶𝜀
0 = 𝑆𝜒𝜀

33/𝛼 is the dynamic electrical capaci-
tance of the electroded piezoceramic disc.

The formula below defines the electrical impedance
𝑍𝑒𝑙(𝜔) of an oscillating piezoceramic disk by Ohm’s law
for a section of an electrical circuit

𝑍𝑒𝑙 (𝜔) =
𝑈0

𝐼0
=

1

𝑖𝜔𝐶𝜀
0

Λ0. (30)

Next, we consider the physical content of the results
obtained.

If the dielectric placed between the electroded
surfaces does not possess piezoelectric properties, then
𝐾2

3 = 0 and Λ0 = 1. The expression (30) acquires the
meaning of a formula widely used in electrical engi-
neering to calculate the electric capacitance reactance
of a flat capacitor. When 𝐾2

3 ̸= 0, the frequency-
dependent change in the electrical impedance 𝑍𝑒𝑙(𝜔)
becomes much more complicated due to alterations
introduced to the function Λ0.

Figure 2 contains a graph reflecting the dynamics
of the Λ0 function calculated for 𝐾2

3 = 0, 5. With
𝛾𝛼 → 0, we have Λ0 = 1/

(︀
1 +𝐾2

3

)︀
. As the argument

𝛾𝛼 increases, the tangent also increases and for a
definite frequency, which is marked with symbol 𝜔𝑟

in Figure 2, the function becomes Λ0 = 0. It then
follows at once that 𝑍𝑒𝑙(𝜔𝑟) = 0. At a frequency of
𝜔𝑟, when Λ0 = 0, the displacement amplitudes of the
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piezoceramic disk material particles increase indefi-
nitely. This phenomenon is caused by the material
particles being displaced within the volume of the
deformable disk that generate an internal electric fi-
eld, the direction of which coincides with the external
electric field. In other words, the internal electric fi-
eld complements the external electric field, hence the
strength of the resulting electric field increases. This
leads to an increase in the displacement amplitudes
of the piezoceramic material particles. In its turn, the
strength of the resulting electric field increases again,
and so do the displacement amplitudes of the material
particles. In the case when an ideal generator of a
harmonically time-varying electric potential difference
is present, the displacement amplitudes of material
particles in an ideal (without loss of elastic vibrati-
ons energy) piezoelectric increase indefinitely at 𝜔𝑝

frequency. In this case, infinitely large polarization
charges are produced and electric currents of infi-
nitely large amplitude flow through the conductors.
The described situation corresponds to the short cir-
cuit mode, i.e., a 𝑍𝑒𝑙(𝜔𝑟) = 0 condition in the cir-
cuit of an ideal electric potential difference generator.
Naturally, the electrical load, that is, the oscillating
piezoceramic disk, consumes the maximum possible
amount of energy from the electrical signal generator
in this case. The physical state of any system that
operates on the energy produced by an external source,
in which the system consumes the maximum possible
amount of energy from the source, is called resonance.
For this reason, 𝜔𝑟 frequency is called the resonance
frequency, and the physical state of the oscillating disk
is called the electromechanical resonance [22].

Fig. 2. Frequency graph for the Λ0 function

In a real-life situation, currents of finite amplitude
flow along the conductors of the electrical circuit, which
is shown in Figure 1. We can define two factors causing
this effect. First, an electrical signal generator has a
finite internal resistance 𝑅𝑟, while an ideal electrical
voltage generator has zero resistance. Secondly, the
piezoceramic material absorbs the energy of elastic
vibrations and converts it into heat.

The integral estimate of energy losses in the volume
of a dynamically deformed solid is a dimensionless
quantity 𝑄0, which is called the quality factor. The
numerical value of the 𝑄0 parameter is inversely
proportional to the amount of energy loss in the materi-
al during the sign inversion of the stress-strain state.
In this case, the wave number 𝛾 becomes a complex-
valued function of the frequency and is determined as
follows: 𝛾=𝛾0 (1−𝑖/(2𝑄0)), where 𝛾0=𝜔/

√︀
0𝑐𝐷33/𝜌0 ;

0𝑐𝐷33 is the static modulus of elasticity. The complex
number 𝛾 transforms the function Λ into a category
of a complex variable function, which at 𝜔𝑟 frequency
has a non-zero finite value. In this case, the electrical
impedance of the oscillating disk acquires 𝑍0 value,
which is an active resistance by its content. This
statement has been fully confirmed by the experi-
mentally observed facts.

If the symbol 𝜀 denotes the value 1/(2𝑄0), which
is obviously a small parameter, then the expansion of
the function Λ0 in a power series with respect to the
small parameter 𝜀 with an accuracy of 𝜀2 and higher
orders of magnitude produces the following expression
for the electrical impedance at the frequency of the first
electromechanical resonance

𝑍𝑒𝑙 (𝜔𝑝)=𝑍0=
𝐾2

3

2 (1+𝐾2
3 )𝑄0𝜔𝑝𝐶𝜀

0

· [𝑥𝑝−sin𝑥𝑝 cos𝑥𝑝]

𝑥𝑝cos2𝑥𝑝
,

where 𝑥𝑝 = 𝜔𝑝𝛼
⧸︁(︁

2
√︀

0𝑐𝐷33/𝜌0

)︁
.

The latter relation defines the numerical value of
the piezoceramics’ quality factor at the frequency of
the first electromechanical resonance

𝑄0=
𝐾2

3

2 (1+𝐾2
3 )𝑍0𝜔𝑝𝐶𝜀

0

· [𝑥𝑝−sin𝑥𝑝 cos𝑥𝑝]

𝑥𝑝cos2𝑥𝑝
. (31)

For PZT-type piezoceramics, the quality factor 𝑄0

has a value of 100. . . 200 relative units at frequencies
(1. . . 2) MHz.

At the frequency 𝜔𝛼, when 𝛾𝛼/2 = 𝜋/2, the functi-
on Λ0 tends to infinity, accordingly, |𝑍𝑒𝑙(𝜔𝛼)| → ∞. In
this case, the amplitude of the electric current in the
conductors of the electrical circuit (Fig. 1) tends to
zero. The piezoelectric disk ceases to consume energy
from the source, i.e., from the generator of the electrical
potential difference. Hence 𝜔𝛼 is called the frequency of
electromechanical antiresonance. The physical essence
of electromechanical antiresonance lies in the fact that
the polarization charge in the volume of the oscillating
disk completely compensates for the electric charge
induced by the electric potential difference generator
on the electroded surfaces of the piezoceramic disk.
Electromechanical antiresonance is the result of the
algebraic addition of the polarization charge and the
electric charge induced by the generator. If there is no
external generator of electric potential difference, the
electromechanical antiresonance is not observed. This
is a typical situation in the case of using piezoelectric
elements as an elastic vibrations receiver. In a real-life
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situation, the electrical impedance of the piezoceramic
disk at 𝜔𝛼 frequency exceeds the electrical impedance
𝑍0 at 𝜔𝑟 frequency by almost three orders of magni-
tude.

4 Discussion and experimental

confirmation of simulation

results

Figure 3 shows the electrical impedance modulus
of a PZT–19 piezoceramic disc. The disc’s materi-
al parameters are 𝑐𝐸33=106 GPa; 𝜌0=7400 kg/m3;
𝑒33=18C/m

2; 𝜒𝜀
33 = 1000𝜒0; 𝜒0=8.85·10−12 F/m; the

ceramics quality factor is 𝑄0=100. The radius 𝑅 of
the disk exceeds the thickness 𝛼 of the disk ten times
(𝑅/𝛼=10). The electrical impedance modulus values in
ohms are plotted on the ordinate. The dimensionless
quantity 𝛾𝛼/(2𝜋) values are plotted on the abscissa.
The inset in the figure field shows a change in the
𝑍𝑒𝑙(𝜔) modulus in the vicinity of the electromechanical
resonance frequency.

Fig. 3. Graphs for the electrical impedance modulus
of the PZT-19 piezoceramic disc, calculated with (solid
curve) and without (dashed curve) piezoelectric effect

It follows from the above report that the
numerical values of the resonance and antiresonance
frequencies are determined by the values of the
piezoceramic material constants. From this obvi-
ous fact follows the possibility of solving the
inverse problem, that is, determining the measured
values of the electromechanical resonance frequenci-
es and antiresonance by recalculating the values of
the piezoceramic material constants. This possibility
determines the relevance and practical significance of
mathematical modeling and the subsequent experi-
mental study of oscillating piezoceramic elements and
their electrical impedance.

Suppose that for the disk under study, an experi-
mental determination of the frequency-dependent
change in the electrical impedance modulus 𝑍𝑒𝑙(𝜔) in a
wide frequency range is performed and a graph similar
to that shown in Figure 3 is performed.

We consider the following values to be experi-
mentally determined:

− disc dimensions 𝛼, 𝑅, in meters;
− disc mass 𝑚, in kilograms;
− frequencies of the first resonance 𝑓𝑟 and the first

antiresonance 𝑓𝛼 in hertz, measured to the nearest
hertz;

− electrical impedance modulus 𝑍0 at the frequency
of the first electromechanical resonance, in ohms;

− electrical impedance modulus 𝑍𝑒𝑙(𝜔𝑛), measured

in ohms at low frequency 𝑓𝑛, where 𝑓𝑛 ≪ 𝑓
(𝑝)
𝑟 , where

𝑓
(𝑝)
𝑟 is the frequency of the first radial resonance,

whereas 𝑓
(𝑝)
𝑟

∼= 𝑓𝑟/20 .
The first step will be to determine the density

of the piezoceramics 𝜌0 = 𝑚/
(︀
𝜋𝛼𝑅2

)︀
. The known

value 𝑍𝑒𝑙(𝜔𝑛) serves to determine the dynamic electric
capacitance of the disc 𝐶𝜎

0 = 1/[2𝜋𝑓𝑛𝑍𝑒𝑙 (𝜔𝑛)]. In this
case we naturally assume that Λ0 ≈ 1. The dielectric
constant is determined from the known capacitance
𝜒𝜎
33 = 𝛼𝐶𝜎

33/
(︀
𝜋𝑅2

)︀
.

The 𝑓𝛼 frequency of the electromechanical anti-
resonance satisfies the condition 𝜋𝑓𝛼𝛼/𝑣

𝐷 = 𝜋/2,

where 𝑣𝐷 =
√︀

0𝑐𝐷33/𝜌0 is the propagation velocity of
elastic perturbations of compression – tension in the
disk material. The condition noted above determi-
nes the velocity 𝑣𝐷 and, consequently, the elasticity
modulus 0𝑐𝐷33 = (2𝑓𝛼𝛼)

2
𝜌0. At the resonance frequency

𝛾𝑟𝛼/2 = 𝜋𝑓𝑟𝛼/𝑣
𝐷 = 𝜋𝑓𝑟/(2𝑓𝛼) the condition results

in the following notation for the electromechanical
resonance

1− 𝐾2
3

1+𝐾2
3

· 𝑡𝑔 [𝜋𝑓𝑟/(2𝑓𝛼) ]
[𝜋𝑓𝑟/(2𝑓𝛼) ]

=0,

whence

𝐾2
3 =

[𝜋𝑓𝑟/(2𝑓𝛼)]

𝑡𝑔 [𝜋𝑓𝑟/(2𝑓𝛼)]− [𝜋𝑓𝑟/(2𝑓𝛼)]
. (32)

The known values of the squared electromechani-
cal coupling coefficient 𝐾2

3 and dielectric constant 𝜒𝜎
33

define the dielectric constant 𝜒𝜀
33 = 𝜒𝜎

33/
(︀
1 +𝐾2

3

)︀
. The

known values 0𝑐𝐷33 and 𝐾2
3 define the elastic modulus

0𝑐𝐸33 = 0𝑐𝐷33/
(︀
1 +𝐾2

3

)︀
. Since 𝐾2

3 = 𝑒233/
(︀
0𝑐𝐸33𝜒

𝜀
33

)︀
,

the piezoelectric modulus is determined as 𝑒33 =
𝐾3

√︀
0𝑐𝐸33𝜒

𝜀
33. From the formula (31) it follows that

𝑄0=
𝐾2

3{[𝜋𝑓𝑟/(2𝑓𝛼)]−sin[𝜋𝑓𝑟/(2𝑓𝛼)] cos[𝜋𝑓𝑟/(2𝑓𝛼)]}

4(1+𝐾2
3 )𝑍0

[︁
(𝜋𝑓𝑟)

2
/(2𝑓𝛼)

]︁
𝐶𝜀

0cos
2[𝜋𝑓𝑟/(2𝑓𝛼)]

.

Thus, the results of measuring the electromechani-
cal resonance and antiresonance frequencies in the
mode of thickness oscillations allow us to establish
the numerical values of the elastic modulus 0𝑐𝐸33, pi-
ezoelectric modulus 𝑒33, and permittivity 𝜒𝜀

33. Quite
apart from that, the measured value of the electrical
impedance at the resonance frequency can determi-
ne the quality factor of the piezoceramics at this
frequency.
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Measuring the electrical impedance of a piezo-
ceramic disk in a low-frequency range or in the mode
of radial oscillations significantly expands the range of
experimentally determined piezoceramic physical and
mechanical parameters.

Conclusions

This project was undertaken to design an algo-
rithm for assembling and solving a mathematical model
of piezoelectric disc transducers, as a result of which
the dependences of a piezoceramic disc’s electrical
impedance on the cyclic frequency have been obtained.
Geometric, mechanical, and electrical parameters of
these transducers have also been established.

Analytical dependences were obtained, according
to which the electrical impedance, the quality factor
and amplitude values of the electric charge and electric
current on the electroded surfaces of a piezoceramic
disc can be determined, provided that the reverse
piezoelectric effect is observed. This enabled us to
conduct a complete calculation of the problem of a pi-
ezoelectric disk’s harmonic radial oscillations, by which
we have significantly expanded the set of physical and
mechanical parameters of piezoelectric ceramics, that,
as a rule, are determined experimentally.

The study has revealed the dependence of the
change in electrical impedance which significantly
depends on the change in the function Λ0, which, in
its turn, depends on the value of the electromechani-
cal coupling coefficient, the wave number of elastic
oscillations, and the Voigt indices. The analysis has
demonstrated that an increase in the value of 𝛾𝛼/𝜋
from 0 to 1 results in a sharp decrease of Λ0 from 0,66
down to -2,0. The authors have also determined that
at the resonance frequency 𝜔𝑟 (Λ0 = 0,5), the oscillat-
ing piezoelectric disc consumes the maximum possible
amount of energy from the electric signal generator.

The comparative analysis of the electric impedance
modules obtained with and without consideration of
the piezoelectric effect in the disc made of PZT-19
piezoelectric ceramics demonstrated a high coinciding
in these data (the difference between the impedance
values in these cases did not exceed 18%).

The proposed paper presents the results obtained
during the experimental scientific and technical project
“Developing a highly efficient mobile ultrasonic system
to intensify the extraction process while manufactur-
ing concentrated functional beverages for combatants”,
that is being implemented by the authors (state
registration entry number: 0121U109660, entry date:
12.03.2021).
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Математичне моделювання дискових
п’єзоелектричних перетворювачiв для
акустоелектронних пристроїв

Базiло К. В., Бондаренко М. О., Усик Л. М.,

Фауре Е. В., Коваленко Ю. I.

В матерiалах статтi представлено алгоритм побу-
дови та дослiдження математичних моделей дискових
п’єзоелектричних перетворювачiв, що знаходять широ-
ке застосування в гiдроакустицi, мiкроелектронiцi, мi-
кросхемотехнiцi (наприклад, як компоненти приймаль-
них антен приладiв гiдроакустичного зв’язку). Переваги
розроблених в статтi моделей полягають у можливостi
встановлення за їх допомогою залежностей, якi є мате-
матичним описом електроакустичного зв’язку мiж хви-
льовими полями на рiзних дiлянках п’єзоелектричного
перетворювача дискової форми.

Отриманi шляхом математичного моделювання ана-
лiтичнi залежностi дозволяють розрахувати значення
електричного iмпедансу та добротностi разом з амплi-
тудними значеннями електричного заряду та струму на
електродованих поверхнях п’єзоелектричного диску за
умов зворотного п’єзоелектричного ефекту. Проведений
повний розрахунок задачi щодо гармонiйних радiальних
коливань дискових п’єзоелектричних перетворювачiв
дозволив суттєво розширити перелiк фiзико-механiчних
параметрiв п’єзоматерiалу, якi ранiше визначалися екс-
периментально.

Показана залежнiсть змiни електричного iмпедан-
су вiд значень коефiцiєнту електромеханiчного зв’язку,
хвильового числа пружних коливань та iндексiв Фойг-
та. Також встановлена висока збiжнiсть мiж модулями
електричного iмпедансу дискiв з п’єзоелектричної ке-
рамiки сорту ЦТС (цирконат-титанат свинцю), як з
урахуванням, так i без урахування п’єзоелектричного
ефекту (розбiжнiсть мiж значеннями iмпедансу в цих
випадках не перевищувала 18%).

Ключовi слова: п’єзоелектричний перетворювач;
акустоелектронiка; математична модель; iмпеданс; дис-
ковий елемент
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