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For modern radio monitoring, a panoramic view of a wide frequency band and signal selection is its most
important part. The constant growth of the number of radio electronic devices and the expansion of the
instantaneous bandwidth of analysis in modern radio receiving devices leads to the fact that a significant
number of analog and digital signals can be observed at the same time. Automatic adaptation of radio
monitoring system to further signal processing is possible due to preliminary signal selection. The goal
of this research is to develop an algorithm for signals selection in panoramic radio monitoring systems
by their external parameters. The essence of proposed algorithm is to detect occupied bands of radio
frequency spectrum, estimate center frequency and bandwidth of each channel, noise level and signal-to-
noise ratio. Creation of frequency channels allows for signal filtering and estimation of pulse durations, as
well as occupancy of each channel. Estimates of parameter for each signal fragment and frequency channel
are recorded in associative arrays, which simplifies further signal selection. Due to variability of noise and
propagation channel, estimates of signal parameters for each signal fragment are random variables. To
obtain reliable estimates of signal center frequency and bandwidth, they are further grouping. Array of data
can be accessed both by frequency channel number (table rows) and by signal parameters (keys), which
are table column headers. Associative relationships between data provide flexible signals filtering by any
combination of parameters. To test developed algorithm, we analyzed frequency band of 933-953 MHz and
used the DataFrame Multi Index data container of Pandas package of Python programming language. This
structure provides multi-level indexing, flexible access to data, and a wide range of tools for their processing
and modifying. Developed algorithm can be used in existing and future radio monitoring systems for radio
electronic devices identification and databases creation.
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Introduction

The rapid growth of electronic devices leads to a
more complex electronic environment [1]. Spectrum
sensing of a wide frequency band and signal selection
is the most important part of modern radio moni-
toring. Expanding the width of the instantaneous
bandwidth of modern radio receivers allows analyzing
bands of radio frequency spectrum (RFS) in which a
significant number of analog and digital signals can
be simultaneously present. Signal channelizing allows
operation in a smaller frequency band, which leads to
an increase in signal-to-noise ratio (SNR) and improved
processing quality. Multi-channel signal processing in
panoramic radio monitoring systems requires signi-
ficant computing power. Therefore, the preliminary
selection of signals by external parameters allows
the radio monitoring system automatically adapt to
further processing, in particular, to select the algorithm
for type of modulation recognizing.

1 Related works

Recently, data science technology, such as machi-
ne learning, neural networks, and big data analysis
have been increasingly used to solve signal selecti-
on problems. In [2, 3], to select signals with some
types of modulation (ASK/FSK), the fast Fourier
transform (FFT) of the signal is calculated with the
subsequent use of classifiers: decision trees, nearest
neighbor methods and support vector machines with
different kernels, artificial neural networks. In [4], for
signals search in a wide frequency band in the presence
of other signals, a high-resolution spectrogram was
calculated. The information from this spectrogram
is fed to a convolutional neural network with deep
learning through a sliding window. In [5], a convoluti-
onal neural network is used to classify signals, and
features for recognition are extracted from the spectral
correlation function. In [6], the support vector method
is used for signal classification. A multistage method
of analyzing RFS using convolutional neural networks
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to SNR estimate, depending on which the further
processing method is selected, is proposed in [7-9]. An
approach using machine learning and entropy values
as a feature vector is presented in [10]. In [11], the
Akaike information criterion is used to analyze the
RF'S, and in [12], big data algorithms are used to build
a large-scale cognitive satellite radio system. In [13],
architecture for signal processing using big data and
deep learning technologies is proposed. The approach is
based on representation of external and internal signal
parameters.

However, if the data for machine learning are
of poor quality (signal fading, distortions in recei-
ver), machine learning methods can select these unin-
formative parasitic characteristics as features and use
them for further work.

Implementation of deep learning algorithms requi-
res a sufficiently large amount of data for training
(signal samples under different conditions), as well
as sufficient computing complexity. For autonomous
sensors, the latter factor can be critical. Also, at recei-
ver location, the signal can be distorted due to channel
influence (frequency-selective fading). Moreover, the
influence of these factors for different channels is di-
fferent and difficult to predict, which will complicate
creation of a data set for training. Incomplete data set
during training leads to an increase in the error rate
when working with real signals. The reviewed papers
describe the use of information technologies for certain
stages of RFS analysis or for detecting specific types of
signals.

2 Problem statement

The aim of the study is to develop an algorithm for
signals selection in radio monitoring systems by their
external parameters.

3 Algorithm for signal selection

The main task of preliminary (fast) analysis of RFS
is to detect and select signals of radio electronic devices
(RED). To do this, the following tasks must be solved:

1) frequency channels detection;

2) SNR estimation
channels;

in detected frequency

3) amalysis of time-frequency-structure of the
signals;

4) signal selection by their external parameters.

These stages make it possible to select signals of
interest from the entire signal stream and implement
its’ detailed analysis to determine their internal
parameters with the subsequent identification of the
RED.

In this paper, signal selection is understood
as the separation of input signal stream into
frequency channels and signals extraction with specifi-
ed characteristics. Signal selection is based on physical
differences in frequency and temporal characteristics of
the signals.

It is recommended to start the identification of di-
gital signals with a general selection process based on
external parameters [14]. External signal parameters
include: center frequency, signal bandwidth, durati-
on (for pulse signals), and spectrum shape. Another
useful parameter for signal processing is SNR value
in each frequency channel, which allows determining
the errors of parameter estimates and the probabili-
ty of correct classification using methods with known
characteristics.

The essence of the proposed approach to signal
selection is to detect occupied channels, determine
center frequency and bandwidth of each channel, and
estimate noise level and SNR. Channelizing allows
for signal filtering and estimation of pulse durations
and occupancy of each channel. Signal is processed
in time windows, and due to the influence of random
factors, estimates of parameter values for each ti-
me fragment differ from each other. Therefore, the
measured parameters values for each signal fragment
are recorded in associative arrays, which further faci-
litate signal selection. Data can be accessed both by
frequency channel number (table rows) and by signal
parameters (keys), which are the table column headers.
Associative relationships between data provide flexible
filtering of signals by any combination of parameters.

Model of received signal mixture by one antenna
can be represented as follows:

K
w(t) =Y silt) # hilt) + £(8),

i=1

(1)

where K — number of radio emission sources;

s;(t) — signal of i-th radio source;

h;(t) — impulse response of propagation of i-th
channel,;

&(t) — white Gaussian noise.

Block diagram of spectrum sensing and signal
selection algorithm is depicted at Fig. 1.

In block 1, the vector of parameters for spectrum
sensing algorithm is entered:

1) z(t) — complex samples of the received si-
gnal (also values of the sampling rate F; and central
frequency of the receiver tuning);

2) Welch periodogram parameters: Nppr — FFT
window length, R — overlap between windows, M —
number of accumulated periodograms, w — window
function;

3) L — length of moving average window for
smoothing power spectral density (PSD) samples;

4) Pp1, Pry — values of false alarm probabilities
for threshold processing of test statistics (coefficient
of variation) and for PSD samples, respectively;
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5) mq, oq — vectors of mean and standard deviati-
on (SD) values of coefficient of variation for the PSD
noise samples for different values of Welch periodogram
parameters;

6) Finin, Finaz — minimum and maximum values of
signal bandwidth for signal selection;

7) Priny Pmaz — minimum and maximum level of
signal power over noise level in frequency domain for
selection;

8) fy — channel center frequency shift.

The vast majority of parameters can be set in
advance and do not need to be adjusted during
the algorithm implementation. These parameters are
purely technical and, if selected correctly, they do not
significantly affect the algorithm. Time, frequency, and
amplitude parameters can be used to search for signals
of specific RED.

Enter algorithm
parameters (1-8)

[ 2
PSD estimation |
| 3
Noise level estimation |
|
4
Frequency channels
detection and filtration ‘
| 5
SNR estimation |
| 6
Estimation of time domain
parameters of the signal
. . l . 7
Estimation of the massive
of signal parameters
| ' q
Data processing |
[
. . 9
Signal selection |

end

Fig. 1. Block diagram of signal selection algorithm

In block 2 PSD is calculated using the Welch
periodogram. It is recommended to choose the length
FFT window Ngpr equal to 4096 or more, since in
this case at low SNR, the probability of detecting
frequency channels increases. Also such signal fragment

has a sufficient length in time domain to estimate
signals’ temporal parameters.

In block 3, the noise level in frequency domain is
estimated.

In block 4, frequency channels are detected and
signals are pre-filtered by bandwidth and power level
to reject noise emissions.

For different types of signals, specialized methods
are used to estimate carrier frequency and bandwidth.
At the stage of signals selection by external parameters,
it is sufficient to have their relatively rough estimates.
When using digital spectrum analyzers to estimate
signals frequency parameters, it is advisable to use
samples of energy spectrum.

As a result of processing RFS, values of frequency
channel boundaries and values of spectral samples
within these boundaries are obtained. Moreover,
frequency boundaries of channels fy and fr, (kpin and
kmas samples numbers) are determined as a result of
threshold processing at a level close to noise level. For
the sampling rate Fj, carrier frequency estimate can be
obtained by the following expression:

fO: (fL+fH)/2:Fs (kmax+kmin)/(2NFFT) 5 (2)
and signal bandwidth is calculated by the following
formula

Af = fu—fr = Fs (kmax—kmin)/Nrrr . (3)

This is the simplest and most intuitive way to
obtain estimates of frequency parameters. In [15], it
is recommended to use the 3% method and the “2-dB”
method to measure the width of the occupied frequency
band. To apply the first method, the frequency resoluti-
on should be at least 0.03 of signal bandwidth, and
SNR should be at least 30 dB. For the second method,
a reference level is selected, usually 0dB. The value
of x depends on radiation class. It is recommended to
measure the bandwidth at -26 dB and apply a conversi-
on factor in accordance with the radiation class.

The % method allows measuring the bandwidth
of signals regardless of the modulation type. However,
it is advisable to use it to estimate bandwidth of digital
signals at low SNR values. In cases of interference, the
“z-dB” method is more appropriate. In this case, to
obtain reliable estimates of bandwidth, signal spectrum
should contain 100-200 spectral samples [16].

In [17], to estimate signals frequency parameters
the samples of PSD are used. Taking into account
values of signal PSD samples P,,, its central frequency
is proposed to calculate by the following expression:

kmax
fO FS Z ZPacm [Z]a (4)

"~ ENppr

1=Kmin

where E — signal energy; ¢ — number of signal bin.
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Signal bandwidth (effective) can be calculated as
follows:

1| B, e
Af=— s 2p2 [il. 5
=\ T L PR O

The estimates obtained in accordance with (5) di-
ffer from signal bandwidth at the noise level (3) and
depend on the shape of signal spectrum. This creates
prerequisites for signal selection using test statistics
from spectral samples.

In most digital radio systems signal bandwidth
remains constant over time because data stream is
transmitted at a constant symbol rate. In analog
systems, especially when transmitting audio signals
(F3E, A3E, J3E), instantaneous bandwidth changes
rapidly. Also, due to the variability of noise at low
SNR, each realization of signal spectrum is represented
by a different number of frequency samples, which
leads to fluctuations in values of frequency parameters.
Therefore, in order to obtain reliable estimates of
center frequency and signal bandwidth, it is necessary
to perform additional processing of sequences of obtai-
ned parameter values.

In block 5, a vector of SNR values is generated for
each channel.

In block 6, frequency channels are filtered in ti-
me domain, pulses are detected, and their temporal
parameters are estimated. Detected in each channel
pulses with probability of false alarm Pp3 are filtered
by duration. Since several pulses can be detected in
frequency channel during signal analysis interval, a
vector of T values is formed. Estimate of channel
occupancy is calculated as the ratio of samples number
that exceeded threshold and were filtered by duration
as signal samples to the total number of signal samples.
Experimental studies have shown that shift of center
frequency in channel f, has virtually no effect on the
quality of signal detection in time domain.

The number of samples for which signal is filtered
in channels is N = (M —1) - R + Nppr. Filter-
ing is performed by calculating the inverse FFT of

Table 1 — Array structure with results of RFS analysis

complex frequency samples of length N. Prior to this,
all frequency samples outside the specified channel are
equalized to zero.

In block 7, an associative array is formed from
measured values of signal parameters. The structure of
array for storing information on results of RFS analysis
is given in Table 1.

Main parameter in Table 1 is number of frequency
channel to which the rest values are assigned. This
approach facilitates further filtering of channels by
values of other parameters. In Table 1, number of
frequency channels is indicated by the line number.
Number of detected frequency channels for each perio-
dogram can be different. Therefore, for different peri-
odograms, the same frequency channel may have a
different number, since channel numbering each time
starts with the lowest value of center frequency nomi-
nal. This is due to fact that signal can be pulsed or with
a frequency hopping and for different signal fragments
this channel can be busy or free.

Block 8 processes tabular data, reassigns channel
numbers, and generates descriptive statistics: average
fo and SD oy values of center frequency, channel
bandwidth Af,oaf, SNR, ognr, occupancy 7, o, and
pulse duration 7.

Due to noise influence, variability of signals,
measurement errors for each signal fragment, measured
parameter values are random values. Therefore, when
processing an array of measurements, it is necessary to
obtain estimates of channel center frequencies. To do
this, we accumulate vector of measured values of center
frequencies fg for all channels into groups by defining
the boundaries of these groups and calculating the
center frequencies of channels as arithmetic averages
within the groups. Vector of i-th group boundaries is
calculated by the following expression:

f; = arg [diff (sort (fo)) > AF], (6)

where AF — minimal separation between frequency
channels.

Periodogram Frequency fo. MHz | fr, MHz | fy, MHz | SNR, dB T, ms n,%
number channel number
933.289 | 933.161 | 933.417 6.44 [0.56,0.19, ...] | 35
0 1 933.770 | 933.565 | 933.975 5.31 [0.57,0.54, ...] | 41
933.295 | 933.176 | 933.415 4.86 [0.55,0.57, ...] | 22
1 1 933.770 | 933.558 | 933.983 6.88 [0.56, 0.56, ...] | 51
2
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Estimation of lower f; and upper fy values of
frequency channel boundaries is calculated using the
vectors of measured f;, and fy values for all signal
fragments. The lowest frequency limit value for i-
th channel is calculated according to the following
expression:

fri = mean (fy, [iP;: (i+1) P)]), 1)
i=0,1,...,Nep—1,

where P; is the number of signal fragments of i-th

channel in which signal was detected; N., — number

of frequency channels.

Value of the upper frequency limit of a channel is
calculated in the same way. Bandwidth of each channel
is calculated as the difference between its high and low
frequencies.

After determination of signal duration and detect-
ing all frequency channels, each channel is assigned
a sequence number associated with center frequency
value in ascending order.

After all the data are processed, arrays of channel
center frequencies and the width of each channel
are formed, the channel numbers are reassigned.
The reassignment is necessary because in each signal
fragment the number of channels can be different or
the same with different carrier frequency nominal.
Number of frequency channels for the entire signal can
be greater than for each individual signal fragment.
Reassignment provides unification of channel number
with its center frequency and other parameters.

In each new channel, for all signal fragments, we
get an array of values filtered by pulse duration. One
channel can have several signal starts and ends within
the analyzed time fragment. Moreover, signal can start
in the previous fragment and end in the next one.

Due to noise and fading in propagation channel,
number of detected pulses with different durations can
be quite large. Assuming that the RED uses a limi-
ted set of pulse durations, the task of finding their
values consists in forming an empirical probability
density of these durations and finding those values
that correspond to its maximums. For a given vector
of pulse durations T in frequency channel, histogram
calculation results in vectors of centers of partitioning
intervals b and the number of values falling into each
interval a.

Then duration of k-th pulse can be found by the
following expression:

(8)

where k also corresponds to the number of the hi-
stogram maximum.

To find all the maxima of a histogram, it is needed
to set search criteria by the value of maximum and
distance between them. It is possible create special
criteria for a particular case.

T = by [arg max (ag)],

Average utilization of the i-th channel in time
domain can be calculated using the following expressi-
on:

P;
Fs Z Tik
k=1

_ b =
"D (M-1)R+ Nrpr

(9)

where D — number of analyzed signal fragments; P; —
number of pulses in i-th channel; 7;;, — duration of k-th
pulse in i-th channel.

Block 9 selects (searches) signals in accordance
with the specified criteria. The result of previous
blocks of algorithm can be presented as an associative
table (matrix S), each row of which corresponds to
the number of reassigned frequency channel, and the
columns contain values of center frequency, bandwidth,
pulse duration, occupancy and SNR. Logical processing
of values from associative table (matrix S), taking into
account frequency and temporal parameters, allows si-
gnal selection and association of individual frequency
channels with RED, which uses frequency hopping.
Signal selection (search) is performed using the condi-
tion vector C, which contains restrictions on values
of signal parameters. When searching for a particular
RED, it is recommended to form the vector C from
double inequalities, since due to influence of random
factors, measured values of parameters may differ from
true ones. The result of selection S[C] is a new matrix
with fewer rows, cell values of which fulfill filtering
requirements.

Developed algorithm for spectrum sensing and
signal selection requires a large number of input
parameters for its operation. That’s why, it is possible
to flexibly adjust this algorithm to work with different
types of signals without changing its structure, but
only by adjusting some parameters.

Values of parameters depend on analyzed frequency
range and a priori information about electronic envi-
ronment. For example, in frequency range below
100 MHz, signals with a bandwidth of more than a few
hundred kHz are practically not found.

4 Results and discussion

Analyzed signal was recorded using software-
defined transceiver HackRF One in 20 MHz bandwidth
(933-953 MHz). The values of algorithm parameters
used in the study are given in Table 2.
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Table 2 — Algorithm parameters

Parameter Value
Nrpr 16384
R 0,5 NFFT
M 30
w Hamming
L 40
P 0,1
Pro 0,1
Fonin 200 kHz
Friaz 10 MHz
Prin 5 dB
Prax 60 dB
o 100 kHz
Prs 106
Toin 0,1 ms
Trazx 1 ms

935.0 937.5 940.0

942.5

For testing the developed approach, we used the
DataFrame Multi Index data container of Pandas
package of Python programming language. This
structure provides multi-level indexing, flexible access
to data, and a wide range of tools for processing and
modifying them, including adding records (columns)
with new keys generated as a result of processing
existing data [18].

Figure 2 shows a spectrogram of a signal recording
with duration of about 3.5 s. For parameters given in
Table 2, this signal recording contains D = 296 signal
fragments with a length of 253952 samples each, which
is about 12.7 ms. The figure shows that some signals
are pulsed, while others appear to be continuous.

950.0

945.0 947.5 952.5

Frequency, MHz

Fig. 2. Spectrogram of a signal in an analyzed frequency band

Figure 3 shows smoothed PSD in the analyzed
frequency band, level noise, and threshold, as well as
the selected frequency channels. After applying the
power level and spectral width filters, band occupancy
is about 83%.

Figure 4 shows PSD for each frequency channel
after additional smoothing with a moving average
window. For each spectrum its’ channel number, band-
width at threshold level and SNR are also shown. As we
can see, in some channels (1,6,7,8,12,17), additional

processing is required to filter out out-of-band spectral
components.

Figure 5 shows time realizations of signals in
selected frequency channels. From these graphs, it is
possible to preliminarily assess the signals temporal
structure and feasibility of further processing in each
channel, taking into account SNR estimates.

As a result of signal analysis 22 frequency channels
were detected in a given frequency band. As can be seen
from the above figures, only 20 channels were detected
for the first FFT realization (Fig. 3).
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Fig. 5. Channelized

signals in time domain

Figure 6 shows signal processing in time domain for

transmission structure.
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Figure 7a shows measured values of signal center .‘ﬂ@”‘;.r;ﬂ\. PR .
frequency (red dots), upper and lower frequency limits sasllT ‘ I .
948.28 948.30 948.32 948.34 948.36 948.38
(green dots), and frequency channels as a result of
) fo, MHz

processing (shaded). Figure 7b shows scatter plot of
measured values of frequency channel boundaries for
each measured value of center frequency, as well as
averaged estimates of frequency parameters according
to expressions (2-3).

(b)

Fig. 7. Measured values of frequency parameters and
frequency channels (a) and scatter plot of channel
frequency limits (b)
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Fig. 8. Dependences of o9, oas, SNR, o5y estimates on center frequency (a) and a similar graph for fo, Af
SD estimates, obtained by expressions (4) and (5) (b)

Figure 8a shows dependence on frequency of center
frequency estimates SD, bandwidth, calculated by
expressions (2) and (3), as well as mean values and
SD of SNR. Figure 8b shows similar dependencies for
which values of center frequency and bandwidth are
calculated by expressions (4) and (5).

As a result of these dependencies analysis, it was
found that estimates of frequency parameters obtained
by expressions (4)-(5) have, on average (for 22 signals),
2 times less variance than those obtained by expressi-
ons (2)-(3). No dependence was found between the
average values of SNR in channel and SD of frequency
parameter estimates. However, it is worth noting that
for channels with a larger SD of SNR, larger SD
of frequency parameter estimates are observed. SNR
value in a channel at short time intervals changes
mainly due to changes in signal power, which may indi-
cate amplitude modulation or presence of deep fading
in propagation channel. In this case, SNR variabili-
ty measure is its SD (Fig. 8). As SNR increase, SD
should decrease. If this does not happen, it can be
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300 1
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200 A

150 A

100 A

I ———— e e

50 kb

O_M

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
T, ms

(a)

assumed that there are internal regularities (modulati-
on parameters) in transmitted data.

Also, for signals with a rectangular spectrum, SD
of center frequency estimates (4) and bandwidth (5) is
larger than for signals with another spectrum shape
and estimates obtained according to expression (2).
In addition, for signals with an almost rectangular
spectrum (OFDM), the ratio of estimates obtained by
expressions (3) and (5) is about 1, while for signals
with a bell-shaped spectrum, this ratio is about 3.

Figure 9 shows histograms of measured values of
pulse durations in channel No. 0 (a) and No. 19 (b).
Both histograms begin with a value of 0.1 ms, which
corresponds to the set value of T},;,. For the first case,
average SNR is 5.7 dB and SNR SD is 0.9 dB, and
for the second case, 13.4 dB and 1 dB, respectively. In
Fig. 9a, a clearly distinguished maximum of histogram
is observed, which corresponds to pulse duration of
about 0.56 ms. In Fig. 9b, despite the high SNR, no
pulses with a fixed duration were detected.

1200} 1
1000 | l
800 - I
€ 600 -
400 1

200 1

01 02 03 04 05 06 07 08

Fig. 9. Histograms of measured pulse durations in channel No. 0 (a) and No. 19 (b)
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Both histograms also show an exponential probabi-
lity density of pulse durations. In this case, this can be
explained by the fact that in presence of deep fading
in propagation channel, signal envelope has a parasitic
amplitude modulation. Moreover, amplitude of signal
envelope changes randomly. In this case, time interval
between two consecutive threshold crossings by signal
envelope is also random exponentially distributed vari-
able.

Figure 10 shows dependence of occupancy 7, SD
occupancy oy, and detected pulses duration on channel
center frequency. In those channels where n = 100%,
oy, = 0 and 7 = 0, a continuous signal is transmi-
tted, level of which never falls below threshold. This
is mainly observed for channels in which an OFDM
signal is transmitted. As it can be seen, for most
frequency channels, pulse duration is (0.54-0.57) ms,
which corresponds to frame duration of the 2G mobile
communication (0.577 ms).
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[
v oo, . e
807 ¢¢ N st boote o
] . 03
R 60 f i
= | | | o E
e | | | [
< 40 ! hd | | 4 ro3
* Y \
™ L] Io.2
20+ ¥ . 4
Fo1
vy v * T  vnm
o] i 'v" ILV LA . vy vu' " 0.0
932.5 935.0 9375 940.0 9425 9450 947.5 950.0 9525
f().. MHz
Fig. 10. Dependence of 7, 0y, T estimates on center
frequency
f_8, MHz BW, kHz T, ms occup, ¥ G5NR, dB
channel_new
a8 933.292 247.4 B8.55 26.8 5.7
1 933.776 426.3 8.56 47.8 5.8
2 936.586 4657.2 a.88 lea.a 13.8
3 939.295 239.4 8.55 94.8 18.7
4 939.693 335.2 8.52 lea.e 22.8
5 94@. 258 219.8 8.24 89.8 12.4
G 941,153 376.4 8.31 3e.e 2.5
7 942.158 615.8 8.55 85.8 4.7
3 942,571 1671.2 .8 lea.e 12.4
9 942,926 526.8 B8.56 958.8 17.2
1@ 943,819 41e.4 B.56 9s.8 18.5
11 944,489 271.9 B8.56 24.8 18.5
12 945,787 2832.8 .88 laa.e 11.7
13 9435. 387 326.2 B8.56 18.8 6.7
14 945.896 263.8 8.55 97.8 17.1
15 949,493 341.8 B8.56 98.8 25.7
16 958.888 319.1 8.57 25.8 18.8
17 958,699 218.9 8.55 96.8 14.8
13 951.287 288.4 .54 8.8 8.6
19 951.667 313.6 8.29 g9e.8 13.4
28 952.186 267.5 B.56 66.8 9.8
21 952,695 213.3 2.17 a.e 2.2
(a)
Fig. 11.

Figure 11a shows a Pandas DataFrame table with
parameters estimated for analyzed signal, and Fig. 11b
shows this table after filtering by channel bandwidth
in accordance with the following condition: 250 < A f
< 500 kHz. As can be seen from this table, associati-
ve relationships between channel number and rest of
parameters are preserved. Similarly, it is possible to
implement filtering of table rows by any parameters
contained in column headers.

In the table (Fig. 11a), we can also add columns
with values of other parameters and modify existing
ones. For example, a column can be added in which,
for given signal parameters (each row), an identifier
can be recorded of a specific RED (radio transmission
standard). In future, this information can be used for
RED identification.

Conclusions

Modern information technologies for signal selecti-
on give new opportunities for a comprehensive and
exhaustive analysis of data obtained in result of
spectrum sensing. Scientific novelty of proposed algo-
rithm lies in creation and processing of associative
arrays of external signal parameters estimates. This
approach provides flexible signal selection in panoramic
radio monitoring systems. Developed algorithm can
be used in existing and prospective radio monitoring
systems for RED identification and databases creation.

Prospects for further research in this area are
related to development of methods and algorithms
for signals selection by spectrum shape, as well as
processing filtered signals in time domain and improv-
ing methods for pulse durations estimation.

f @, MHz BW, kHz T, ms occup, ¥ 5SNR, dB
channel_new
1 933.776 426.3 @8.56 47.8 5.8
4 939,693 335.2 8.52 1e6.8 22.8
B 941.153 376.4 8.31 38.8 2.5
18 943,819 416.4 8.56 95.@ 18.5
11 944,489 271.9 .56 24.8 18.5
13 943,387 326.2 .56 1e.8 6.7
14 943,896 263.8 8.55 97.8 17.1
15 949,493 341.8 .56 98.8 25.7
16 95a. 858 319.1 2.57 28.8 18.8
19 951.667 313.6 8.29 Sa.e 13.4
28 952. 186 267.5 .56 66.8 9.8

(b)

Table with parameter estimated for an analyzed signal before (a) and after filtering by channel
bandwidth (b)
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AnropuTmM  aHaMi3y paaiovacTOTHOTO

CIOEKTpA Ta CeJIeKIlil CUTHAJIB 3a 30B-
HINTHIME apaMeTpamnu

Byeatios M. B.

st cy9acHOro PaiioMOHITOPUHTY ITAHOPAMHUN OIJIS,
IIUPOKOI CMYTHM YaCTOT 1 CEeJIEKINis CUTHAJIB CKJIAJA€ Io-
ro madBaxkausimy dactuHy. IlocriitHe 3pocTaHHs KiTbKO-
cTi pajioe/leKTPOHHUX 3ac0o0iB Ta PO3MIMPEHHS IIUPUHU
MHTTEBOI CMYTM QHAJMI3Y y CYyYaCHHX DPaIiONpUIMAIBHUX
TPUCTPOSAX MPU3BOJAUTDH JI0 TOTO, IO OJHOYACHO MOXKE CIIO-
crepiraTrcs 3HAYHA KIJIbKICTH AHAJIONOBHX Ta HudpoBux
curtajis. ABToMaTWyYHa aJanTallis CUCTEMU PaJiOMOHITO-
PUHTY 70 TI0/IaIbIT0] OOPOOKY CUTHAIB MOXK/IMBA 3aBISKN
nonepeHii cejiekmil curaasiis. MeTorw 10/l pKeHHs € Po3-
pobOKa aJropuTMy sl CEJIeKIl CUTHAJIB y MaHOPAMHUX
CHCTeMax PaIiOMOHITOPHWHIY 33 iX 30BHINTHIME ITapaMeTpa-
mu. CyTHICTH 3aIIPOIIOHOBAHOIO AJrOPUTMY LOJIATAE y BU-
ABJICHH] 3aMHATUX IITAHOK PAJi0YacTOTHOTO CIEKTDA, BH-
3HAYeHHI MEHTPAIBLHOI YaCTOTH TA IMIUPUHU CMYTH KOKHOTO
KaHaJIy, OHIOBAHHI PIBHS IIyMy Ta BiJHONIEHHH CUTHAJI-
uryM. Y TBODEHHSI ACTOTHUX KAHAJIB J03BOJISE IIPOBOIUTH
GbimbTpario CUrHAIIB Ta OIIHIOBATH TPUBAJIOCTI IMITYIIb-
ciB, a TaKOX 3aBaHTaXKeHICTb KOKHOrO KaHasty. Ouinkw
3HAEHb apPAMeTPIB I KOXKHOTO (hparMeHTy CUTHAJIY Ta
YaCTOTHOTO KAHAJY 3alUCYIOTHCHI B ACOIIATHBHI MaCHUBH,
0 B HOJAJIBHIOMY IIOJIETIIYE CEJIEKLiI0 CHUrHAIiB. Uepes
MIHJMBICTD NIYMy Ta KaHAJIy IOIINDEHHS OIIHKW 3HAYEHb
mapaMeTpiB CHUTHAJIB JjIs KOXKHOTO (parMeHTy CHUTHAJLY
OyZyTh BALIQAKOBUMY BesmauHaMu. i oTpuManus Ha tiii-
HUX OIHOK IIEHTPAJIHLHOI JaCTOTH Ta IIMPUHA CMYTH CUTHA-
JIy TIPOBEJIEHO iX 0/IATKOBY OOPOOKY MIJISIXOM T'DYILyBAHHS
BUMIDIHAX 3Ha4eHb. JlOCTym [0 JaHMX MaCUBY MOXKHA
3AIHCHIOBATH 9K 33 HOMEPOM 9aCTOTHOrO KaHady (psi-
Ky TabJsmIli), TAaK 1 33 mapaMeTpaMy CHTHAIB (K/II09aMu),
K1 € 3aT0JI0BKAMU CTOBIIIIB TabanI. AcomiaTuBHI 3B’ 43K1
MiXK manuMu 3abe3medarh THYUKYy (IiabTpamiio CHrHAJIB
3a Oyab-skuMu KOMOiHATsiMu mtapameTpis. s mepesipku
pO3po0IeHOTO MiAX0My Oy/I0 TPOAHATIZ0BAHO CMYTY dUa-
croT 933-953 MI'm Ta BUKOpHCTAHO KOHTEHHED IS JAHUX
DataFrame Multi Index makery Pandas moBu mporpamysa-
uast Python. /Tana cTpykTypa 3abe3mnedye GaraTopiBHEBY
iHeKcaIiio, THYIKHi JOCTYII 40 JAHUX Ta MUPOKUM HAbIp
incTpymenTiB myis ix obpobsenns ta momudikarii. Pozpo-
G/1eHnit AJITOPUTM MOYKe OYTH BHKOPHMCTAHUI B iCHYIOYHX
Ta MEepPCIeKTUBHAX CHUCTEMAX PAJIOMOHITOPUHTY IJId ieH-
tudikamii pagioesleKTPpOHHUX 3ac00iB Ta (GopmyBaHH: 0a3
TAHUX.

Karwosi caoea: pamiogacTOTHHI CIEKTD; CEJIEKIId CH-
THAJIiB; 30BHINIHI [TaApaMeTPH; PaJiOMOHITOPHHI'; aCOIIaATHUB-
HUII MaCHUB
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