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For modern radio monitoring, a panoramic view of a wide frequency band and signal selection is its most
important part. The constant growth of the number of radio electronic devices and the expansion of the
instantaneous bandwidth of analysis in modern radio receiving devices leads to the fact that a significant
number of analog and digital signals can be observed at the same time. Automatic adaptation of radio
monitoring system to further signal processing is possible due to preliminary signal selection. The goal
of this research is to develop an algorithm for signals selection in panoramic radio monitoring systems
by their external parameters. The essence of proposed algorithm is to detect occupied bands of radio
frequency spectrum, estimate center frequency and bandwidth of each channel, noise level and signal-to-
noise ratio. Creation of frequency channels allows for signal filtering and estimation of pulse durations, as
well as occupancy of each channel. Estimates of parameter for each signal fragment and frequency channel
are recorded in associative arrays, which simplifies further signal selection. Due to variability of noise and
propagation channel, estimates of signal parameters for each signal fragment are random variables. To
obtain reliable estimates of signal center frequency and bandwidth, they are further grouping. Array of data
can be accessed both by frequency channel number (table rows) and by signal parameters (keys), which
are table column headers. Associative relationships between data provide flexible signals filtering by any
combination of parameters. To test developed algorithm, we analyzed frequency band of 933-953 MHz and
used the DataFrame Multi Index data container of Pandas package of Python programming language. This
structure provides multi-level indexing, flexible access to data, and a wide range of tools for their processing
and modifying. Developed algorithm can be used in existing and future radio monitoring systems for radio
electronic devices identification and databases creation.
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Introduction

The rapid growth of electronic devices leads to a
more complex electronic environment [1]. Spectrum
sensing of a wide frequency band and signal selection
is the most important part of modern radio moni-
toring. Expanding the width of the instantaneous
bandwidth of modern radio receivers allows analyzing
bands of radio frequency spectrum (RFS) in which a
significant number of analog and digital signals can
be simultaneously present. Signal channelizing allows
operation in a smaller frequency band, which leads to
an increase in signal-to-noise ratio (SNR) and improved
processing quality. Multi-channel signal processing in
panoramic radio monitoring systems requires signi-
ficant computing power. Therefore, the preliminary
selection of signals by external parameters allows
the radio monitoring system automatically adapt to
further processing, in particular, to select the algorithm
for type of modulation recognizing.

1 Related works

Recently, data science technology, such as machi-
ne learning, neural networks, and big data analysis
have been increasingly used to solve signal selecti-
on problems. In [2, 3], to select signals with some
types of modulation (ASK/FSK), the fast Fourier
transform (FFT) of the signal is calculated with the
subsequent use of classifiers: decision trees, nearest
neighbor methods and support vector machineswith
different kernels, artificial neural networks. In [4], for
signals search in a wide frequency band in the presence
of other signals, a high-resolution spectrogram was
calculated. The information from this spectrogram
is fed to a convolutional neural network with deep
learning through a sliding window. In [5], a convoluti-
onal neural network is used to classify signals, and
features for recognition are extracted from the spectral
correlation function. In [6], the support vector method
is used for signal classification. A multistage method
of analyzing RFS using convolutional neural networks
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to SNR estimate, depending on which the further
processing method is selected, is proposed in [7–9]. An
approach using machine learning and entropy values
as a feature vector is presented in [10]. In [11], the
Akaike information criterion is used to analyze the
RFS, and in [12], big data algorithms are used to build
a large-scale cognitive satellite radio system. In [13],
architecture for signal processing using big data and
deep learning technologies is proposed. The approach is
based on representation of external and internal signal
parameters.

However, if the data for machine learning are
of poor quality (signal fading, distortions in recei-
ver), machine learning methods can select these unin-
formative parasitic characteristics as features and use
them for further work.

Implementation of deep learning algorithms requi-
res a sufficiently large amount of data for training
(signal samples under different conditions), as well
as sufficient computing complexity. For autonomous
sensors, the latter factor can be critical. Also, at recei-
ver location, the signal can be distorted due to channel
influence (frequency-selective fading). Moreover, the
influence of these factors for different channels is di-
fferent and difficult to predict, which will complicate
creation of a data set for training. Incomplete data set
during training leads to an increase in the error rate
when working with real signals. The reviewed papers
describe the use of information technologies for certain
stages of RFS analysis or for detecting specific types of
signals.

2 Problem statement

The aim of the study is to develop an algorithm for
signals selection in radio monitoring systems by their
external parameters.

3 Algorithm for signal selection

The main task of preliminary (fast) analysis of RFS
is to detect and select signals of radio electronic devices
(RED). To do this, the following tasks must be solved:

1) frequency channels detection;

2) SNR estimation in detected frequency
channels;

3) analysis of time-frequency-structure of the
signals;

4) signal selection by their external parameters.

These stages make it possible to select signals of
interest from the entire signal stream and implement
its’ detailed analysis to determine their internal
parameters with the subsequent identification of the
RED.

In this paper, signal selection is understood
as the separation of input signal stream into
frequency channels and signals extraction with specifi-
ed characteristics. Signal selection is based on physical
differences in frequency and temporal characteristics of
the signals.

It is recommended to start the identification of di-
gital signals with a general selection process based on
external parameters [14]. External signal parameters
include: center frequency, signal bandwidth, durati-
on (for pulse signals), and spectrum shape. Another
useful parameter for signal processing is SNR value
in each frequency channel, which allows determining
the errors of parameter estimates and the probabili-
ty of correct classification using methods with known
characteristics.

The essence of the proposed approach to signal
selection is to detect occupied channels, determine
center frequency and bandwidth of each channel, and
estimate noise level and SNR. Channelizing allows
for signal filtering and estimation of pulse durations
and occupancy of each channel. Signal is processed
in time windows, and due to the influence of random
factors, estimates of parameter values for each ti-
me fragment differ from each other. Therefore, the
measured parameters values for each signal fragment
are recorded in associative arrays, which further faci-
litate signal selection. Data can be accessed both by
frequency channel number (table rows) and by signal
parameters (keys), which are the table column headers.
Associative relationships between data provide flexible
filtering of signals by any combination of parameters.

Model of received signal mixture by one antenna
can be represented as follows:

𝑥(𝑡) =

𝐾∑︁
𝑖=1

𝑠𝑖(𝑡) * ℎ𝑖(𝑡) + 𝜉(𝑡) , (1)

where 𝐾 – number of radio emission sources;
𝑠𝑖(𝑡) – signal of 𝑖-th radio source;
ℎ𝑖(𝑡) – impulse response of propagation of 𝑖-th

channel;
𝜉(𝑡) – white Gaussian noise.
Block diagram of spectrum sensing and signal

selection algorithm is depicted at Fig. 1.
In block 1, the vector of parameters for spectrum

sensing algorithm is entered:
1) 𝑥(𝑡) – complex samples of the received si-

gnal (also values of the sampling rate 𝐹𝑠 and central
frequency of the receiver tuning);

2) Welch periodogram parameters: 𝑁𝐹𝐹𝑇 – FFT
window length, 𝑅 – overlap between windows, 𝑀 –
number of accumulated periodograms, 𝑤 – window
function;

3) 𝐿 – length of moving average window for
smoothing power spectral density (PSD) samples;

4) 𝑃𝐹1, 𝑃𝐹2 – values of false alarm probabilities
for threshold processing of test statistics (coefficient
of variation) and for PSD samples, respectively;
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5) mQ, 𝜎Q – vectors of mean and standard deviati-
on (SD) values of coefficient of variation for the PSD
noise samples for different values of Welch periodogram
parameters;

6) 𝐹𝑚𝑖𝑛, 𝐹𝑚𝑎𝑥 – minimum and maximum values of
signal bandwidth for signal selection;

7) 𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥 – minimum and maximum level of
signal power over noise level in frequency domain for
selection;

8) 𝑓𝑏 – channel center frequency shift.
The vast majority of parameters can be set in

advance and do not need to be adjusted during
the algorithm implementation. These parameters are
purely technical and, if selected correctly, they do not
significantly affect the algorithm. Time, frequency, and
amplitude parameters can be used to search for signals
of specific RED.
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Fig. 1. Block diagram of signal selection algorithm

In block 2 PSD is calculated using the Welch
periodogram. It is recommended to choose the length
FFT window 𝑁𝐹𝐹𝑇 equal to 4096 or more, since in
this case at low SNR, the probability of detecting
frequency channels increases. Also such signal fragment

has a sufficient length in time domain to estimate
signals’ temporal parameters.

In block 3, the noise level in frequency domain is
estimated.

In block 4, frequency channels are detected and
signals are pre-filtered by bandwidth and power level
to reject noise emissions.

For different types of signals, specialized methods
are used to estimate carrier frequency and bandwidth.
At the stage of signals selection by external parameters,
it is sufficient to have their relatively rough estimates.
When using digital spectrum analyzers to estimate
signals frequency parameters, it is advisable to use
samples of energy spectrum.

As a result of processing RFS, values of frequency
channel boundaries and values of spectral samples
within these boundaries are obtained. Moreover,
frequency boundaries of channels 𝑓𝐻 and 𝑓𝐿 (𝑘𝑚𝑖𝑛 and
𝑘𝑚𝑎𝑥 samples numbers) are determined as a result of
threshold processing at a level close to noise level. For
the sampling rate 𝐹𝑠, carrier frequency estimate can be
obtained by the following expression:

𝑓0 = (𝑓𝐿+𝑓𝐻)/2 = 𝐹𝑠 (𝑘max+𝑘min)/(2𝑁𝐹𝐹𝑇 ) , (2)

and signal bandwidth is calculated by the following
formula

∆𝑓 = 𝑓𝐻−𝑓𝐿 = 𝐹𝑠 (𝑘max−𝑘min)/𝑁𝐹𝐹𝑇 . (3)

This is the simplest and most intuitive way to
obtain estimates of frequency parameters. In [15], it
is recommended to use the 𝛽% method and the “𝑥-dB”
method to measure the width of the occupied frequency
band. To apply the first method, the frequency resoluti-
on should be at least 0.03 of signal bandwidth, and
SNR should be at least 30 dB. For the second method,
a reference level is selected, usually 0 dB. The value
of 𝑥 depends on radiation class. It is recommended to
measure the bandwidth at -26 dB and apply a conversi-
on factor in accordance with the radiation class.

The 𝛽% method allows measuring the bandwidth
of signals regardless of the modulation type. However,
it is advisable to use it to estimate bandwidth of digital
signals at low SNR values. In cases of interference, the
“𝑥-dB” method is more appropriate. In this case, to
obtain reliable estimates of bandwidth, signal spectrum
should contain 100-200 spectral samples [16].

In [17], to estimate signals frequency parameters
the samples of PSD are used. Taking into account
values of signal PSD samples 𝑃𝑥𝑥, its central frequency
is proposed to calculate by the following expression:

𝑓0 =
𝐹𝑠

𝐸𝑁𝐹𝐹𝑇

𝑘max∑︁
𝑖=𝑘min

𝑖𝑃𝑥𝑥 [𝑖], (4)

where 𝐸 – signal energy; 𝑖 – number of signal bin.
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Signal bandwidth (effective) can be calculated as
follows:

∆𝑓 =
1

𝐸

⎯⎸⎸⎷ 𝐹𝑠

𝑁𝐹𝐹𝑇

𝑘max∑︁
𝑖=𝑘min

𝑖2𝑃 2
𝑥𝑥 [𝑖]. (5)

The estimates obtained in accordance with (5) di-
ffer from signal bandwidth at the noise level (3) and
depend on the shape of signal spectrum. This creates
prerequisites for signal selection using test statistics
from spectral samples.

In most digital radio systems signal bandwidth
remains constant over time because data stream is
transmitted at a constant symbol rate. In analog
systems, especially when transmitting audio signals
(F3E, A3E, J3E), instantaneous bandwidth changes
rapidly. Also, due to the variability of noise at low
SNR, each realization of signal spectrum is represented
by a different number of frequency samples, which
leads to fluctuations in values of frequency parameters.
Therefore, in order to obtain reliable estimates of
center frequency and signal bandwidth, it is necessary
to perform additional processing of sequences of obtai-
ned parameter values.

In block 5, a vector of SNR values is generated for
each channel.

In block 6, frequency channels are filtered in ti-
me domain, pulses are detected, and their temporal
parameters are estimated. Detected in each channel
pulses with probability of false alarm 𝑃𝐹3 are filtered
by duration. Since several pulses can be detected in
frequency channel during signal analysis interval, a
vector of T values is formed. Estimate of channel
occupancy is calculated as the ratio of samples number
that exceeded threshold and were filtered by duration
as signal samples to the total number of signal samples.
Experimental studies have shown that shift of center
frequency in channel 𝑓𝑏 has virtually no effect on the
quality of signal detection in time domain.

The number of samples for which signal is filtered
in channels is 𝑁 = (𝑀 − 1) · 𝑅 + 𝑁𝐹𝐹𝑇 . Filter-
ing is performed by calculating the inverse FFT of

complex frequency samples of length 𝑁 . Prior to this,
all frequency samples outside the specified channel are
equalized to zero.

In block 7, an associative array is formed from
measured values of signal parameters. The structure of
array for storing information on results of RFS analysis
is given in Table 1.

Main parameter in Table 1 is number of frequency
channel to which the rest values are assigned. This
approach facilitates further filtering of channels by
values of other parameters. In Table 1, number of
frequency channels is indicated by the line number.
Number of detected frequency channels for each perio-
dogram can be different. Therefore, for different peri-
odograms, the same frequency channel may have a
different number, since channel numbering each time
starts with the lowest value of center frequency nomi-
nal. This is due to fact that signal can be pulsed or with
a frequency hopping and for different signal fragments
this channel can be busy or free.

Block 8 processes tabular data, reassigns channel
numbers, and generates descriptive statistics: average
𝑓0 and SD 𝜎𝑓0 values of center frequency, channel
bandwidth ∆𝑓, 𝜎Δ𝑓 , SNR, 𝜎𝑆𝑁𝑅, occupancy 𝜂, 𝜎𝜂, and
pulse duration 𝜏 .

Due to noise influence, variability of signals,
measurement errors for each signal fragment, measured
parameter values are random values. Therefore, when
processing an array of measurements, it is necessary to
obtain estimates of channel center frequencies. To do
this, we accumulate vector of measured values of center
frequencies f0 for all channels into groups by defining
the boundaries of these groups and calculating the
center frequencies of channels as arithmetic averages
within the groups. Vector of 𝑖-th group boundaries is
calculated by the following expression:

fi = arg [𝑑𝑖𝑓𝑓 (𝑠𝑜𝑟𝑡 (f0)) ≥ ∆𝐹 ] , (6)

where ∆𝐹 – minimal separation between frequency
channels.

Table 1 — Array structure with results of RFS analysis

Periodogram
number

Frequency
channel number

𝑓0, MHz 𝑓𝐿, MHz 𝑓𝐻 , MHz 𝑆𝑁𝑅, dB T, ms 𝜂,%

0 933.289 933.161 933.417 6.44 [0.56, 0.19, . . . ] 35

0 1 933.770 933.565 933.975 5.31 [0.57, 0.54, . . . ] 41

. . . . . . . . . . . . . . . . . . . . .

0 933.295 933.176 933.415 4.86 [0.55, 0.57, . . . ] 22

1 1 933.770 933.558 933.983 6.88 [0.56, 0.56, . . . ] 51

. . . . . . . . . . . . . . . . . . . . .

2 . . . . . . . . . . . . . . . . . . . . .
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Estimation of lower 𝑓𝐿 and upper 𝑓𝐻 values of
frequency channel boundaries is calculated using the
vectors of measured fL and fH values for all signal
fragments. The lowest frequency limit value for 𝑖-
th channel is calculated according to the following
expression:

𝑓𝐿𝑖 = 𝑚𝑒𝑎𝑛 (fL [𝑖𝑃𝑖: (𝑖+1)𝑃𝑖]) ,

𝑖=0, 1, . . . , 𝑁𝑐ℎ−1,
(7)

where 𝑃𝑖 is the number of signal fragments of 𝑖-th
channel in which signal was detected; 𝑁𝑐ℎ – number
of frequency channels.

Value of the upper frequency limit of a channel is
calculated in the same way. Bandwidth of each channel
is calculated as the difference between its high and low
frequencies.

After determination of signal duration and detect-
ing all frequency channels, each channel is assigned
a sequence number associated with center frequency
value in ascending order.

After all the data are processed, arrays of channel
center frequencies and the width of each channel
are formed, the channel numbers are reassigned.
The reassignment is necessary because in each signal
fragment the number of channels can be different or
the same with different carrier frequency nominal.
Number of frequency channels for the entire signal can
be greater than for each individual signal fragment.
Reassignment provides unification of channel number
with its center frequency and other parameters.

In each new channel, for all signal fragments, we
get an array of values filtered by pulse duration. One
channel can have several signal starts and ends within
the analyzed time fragment. Moreover, signal can start
in the previous fragment and end in the next one.

Due to noise and fading in propagation channel,
number of detected pulses with different durations can
be quite large. Assuming that the RED uses a limi-
ted set of pulse durations, the task of finding their
values consists in forming an empirical probability
density of these durations and finding those values
that correspond to its maximums. For a given vector
of pulse durations T in frequency channel, histogram
calculation results in vectors of centers of partitioning
intervals b and the number of values falling into each
interval a.

Then duration of 𝑘-th pulse can be found by the
following expression:

𝜏𝑘 = 𝑏𝑘 [argmax (𝑎𝑘)] , (8)

where 𝑘 also corresponds to the number of the hi-
stogram maximum.

To find all the maxima of a histogram, it is needed
to set search criteria by the value of maximum and
distance between them. It is possible create special
criteria for a particular case.

Average utilization of the 𝑖-th channel in time
domain can be calculated using the following expressi-
on:

𝜂𝑖 =
𝑃𝑖

𝐷
·

𝐹𝑠

𝑃𝑖∑︀
𝑘=1

𝜏𝑖𝑘

(𝑀−1)𝑅+𝑁𝐹𝐹𝑇
, (9)

where 𝐷 – number of analyzed signal fragments; 𝑃𝑖 –
number of pulses in 𝑖-th channel; 𝜏𝑖𝑘 – duration of 𝑘-th
pulse in 𝑖-th channel.

Block 9 selects (searches) signals in accordance
with the specified criteria. The result of previous
blocks of algorithm can be presented as an associative
table (matrix S), each row of which corresponds to
the number of reassigned frequency channel, and the
columns contain values of center frequency, bandwidth,
pulse duration, occupancy and SNR. Logical processing
of values from associative table (matrix S), taking into
account frequency and temporal parameters, allows si-
gnal selection and association of individual frequency
channels with RED, which uses frequency hopping.
Signal selection (search) is performed using the condi-
tion vector C, which contains restrictions on values
of signal parameters. When searching for a particular
RED, it is recommended to form the vector C from
double inequalities, since due to influence of random
factors, measured values of parameters may differ from
true ones. The result of selection S[C] is a new matrix
with fewer rows, cell values of which fulfill filtering
requirements.

Developed algorithm for spectrum sensing and
signal selection requires a large number of input
parameters for its operation. That’s why, it is possible
to flexibly adjust this algorithm to work with different
types of signals without changing its structure, but
only by adjusting some parameters.

Values of parameters depend on analyzed frequency
range and a priori information about electronic envi-
ronment. For example, in frequency range below
100MHz, signals with a bandwidth of more than a few
hundred kHz are practically not found.

4 Results and discussion

Analyzed signal was recorded using software-
defined transceiver HackRF One in 20 MHz bandwidth
(933-953 MHz). The values of algorithm parameters
used in the study are given in Table 2.
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Table 2 — Algorithm parameters

Parameter Value

𝑁𝐹𝐹𝑇 16384

𝑅 0,5 𝑁𝐹𝐹𝑇

𝑀 30

𝑤 Hamming

𝐿 40

𝑃𝐹1 0,1

𝑃𝐹2 0,1

𝐹𝑚𝑖𝑛 200 kHz

𝐹𝑚𝑎𝑥 10 MHz

𝑃𝑚𝑖𝑛 5 dB

𝑃𝑚𝑎𝑥 60 dB

𝑓𝑏 100 kHz

𝑃𝐹3 10−6

𝑇𝑚𝑖𝑛 0,1 ms

𝑇𝑚𝑎𝑥 1 ms

For testing the developed approach, we used the
DataFrame Multi Index data container of Pandas
package of Python programming language. This
structure provides multi-level indexing, flexible access
to data, and a wide range of tools for processing and
modifying them, including adding records (columns)
with new keys generated as a result of processing
existing data [18].

Figure 2 shows a spectrogram of a signal recording
with duration of about 3.5 s. For parameters given in
Table 2, this signal recording contains D = 296 signal
fragments with a length of 253952 samples each, which
is about 12.7 ms. The figure shows that some signals
are pulsed, while others appear to be continuous.

Fig. 2. Spectrogram of a signal in an analyzed frequency band

Figure 3 shows smoothed PSD in the analyzed
frequency band, level noise, and threshold, as well as
the selected frequency channels. After applying the
power level and spectral width filters, band occupancy
is about 83%.

Figure 4 shows PSD for each frequency channel
after additional smoothing with a moving average
window. For each spectrum its’ channel number, band-
width at threshold level and SNR are also shown. As we
can see, in some channels (1, 6, 7, 8, 12, 17), additional

processing is required to filter out out-of-band spectral
components.

Figure 5 shows time realizations of signals in
selected frequency channels. From these graphs, it is
possible to preliminarily assess the signals temporal
structure and feasibility of further processing in each
channel, taking into account SNR estimates.

As a result of signal analysis 22 frequency channels
were detected in a given frequency band. As can be seen
from the above figures, only 20 channels were detected
for the first FFT realization (Fig. 3).
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Fig. 3. Channelized spectrum

Fig. 4. PSD for each frequency channel after additional smoothing
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Fig. 5. Channelized signals in time domain

Figure 6 shows signal processing in time domain for
channel 0. Since in process of data generation, short
bursts in the time domain can be created that are not
related to useful pulses, filtering by duration allows
us to discard some of uninformative data about the
transmission structure.

Fig. 6. Time domain signal processing for
channel No. 0

Figure 7a shows measured values of signal center
frequency (red dots), upper and lower frequency limits
(green dots), and frequency channels as a result of
processing (shaded). Figure 7b shows scatter plot of
measured values of frequency channel boundaries for
each measured value of center frequency, as well as
averaged estimates of frequency parameters according
to expressions (2-3).

(a)

(b)

Fig. 7. Measured values of frequency parameters and
frequency channels (a) and scatter plot of channel

frequency limits (b)
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(a) (b)

Fig. 8. Dependences of 𝜎𝑓0, 𝜎Δ𝑓 , SNR, 𝜎𝑆𝑁𝑅 estimates on center frequency (a) and a similar graph for 𝑓0, ∆𝑓
SD estimates, obtained by expressions (4) and (5) (b)

Figure 8a shows dependence on frequency of center
frequency estimates SD, bandwidth, calculated by
expressions (2) and (3), as well as mean values and
SD of SNR. Figure 8b shows similar dependencies for
which values of center frequency and bandwidth are
calculated by expressions (4) and (5).

As a result of these dependencies analysis, it was
found that estimates of frequency parameters obtained
by expressions (4)-(5) have, on average (for 22 signals),
2 times less variance than those obtained by expressi-
ons (2)-(3). No dependence was found between the
average values of SNR in channel and SD of frequency
parameter estimates. However, it is worth noting that
for channels with a larger SD of SNR, larger SD
of frequency parameter estimates are observed. SNR
value in a channel at short time intervals changes
mainly due to changes in signal power, which may indi-
cate amplitude modulation or presence of deep fading
in propagation channel. In this case, SNR variabili-
ty measure is its SD (Fig. 8). As SNR increase, SD
should decrease. If this does not happen, it can be

assumed that there are internal regularities (modulati-
on parameters) in transmitted data.

Also, for signals with a rectangular spectrum, SD
of center frequency estimates (4) and bandwidth (5) is
larger than for signals with another spectrum shape
and estimates obtained according to expression (2).
In addition, for signals with an almost rectangular
spectrum (OFDM), the ratio of estimates obtained by
expressions (3) and (5) is about 1, while for signals
with a bell-shaped spectrum, this ratio is about 3.

Figure 9 shows histograms of measured values of
pulse durations in channel No. 0 (a) and No. 19 (b).
Both histograms begin with a value of 0.1 ms, which
corresponds to the set value of 𝑇𝑚𝑖𝑛. For the first case,
average SNR is 5.7 dB and SNR SD is 0.9 dB, and
for the second case, 13.4 dB and 1 dB, respectively. In
Fig. 9a, a clearly distinguished maximum of histogram
is observed, which corresponds to pulse duration of
about 0.56 ms. In Fig. 9b, despite the high SNR, no
pulses with a fixed duration were detected.

(a) (b)

Fig. 9. Histograms of measured pulse durations in channel No. 0 (a) and No. 19 (b)
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Both histograms also show an exponential probabi-
lity density of pulse durations. In this case, this can be
explained by the fact that in presence of deep fading
in propagation channel, signal envelope has a parasitic
amplitude modulation. Moreover, amplitude of signal
envelope changes randomly. In this case, time interval
between two consecutive threshold crossings by signal
envelope is also random exponentially distributed vari-
able.

Figure 10 shows dependence of occupancy 𝜂, SD
occupancy 𝜎𝜂, and detected pulses duration on channel
center frequency. In those channels where 𝜂 = 100%,
𝜎𝜂 = 0 and 𝜏 = 0, a continuous signal is transmi-
tted, level of which never falls below threshold. This
is mainly observed for channels in which an OFDM
signal is transmitted. As it can be seen, for most
frequency channels, pulse duration is (0.54-0.57) ms,
which corresponds to frame duration of the 2G mobile
communication (0.577 ms).

Fig. 10. Dependence of 𝜂, 𝜎𝜂, 𝜏 estimates on center
frequency

Figure 11a shows a Pandas DataFrame table with
parameters estimated for analyzed signal, and Fig. 11b
shows this table after filtering by channel bandwidth
in accordance with the following condition: 250 < ∆𝑓
< 500 kHz. As can be seen from this table, associati-
ve relationships between channel number and rest of
parameters are preserved. Similarly, it is possible to
implement filtering of table rows by any parameters
contained in column headers.

In the table (Fig. 11a), we can also add columns
with values of other parameters and modify existing
ones. For example, a column can be added in which,
for given signal parameters (each row), an identifier
can be recorded of a specific RED (radio transmission
standard). In future, this information can be used for
RED identification.

Conclusions

Modern information technologies for signal selecti-
on give new opportunities for a comprehensive and
exhaustive analysis of data obtained in result of
spectrum sensing. Scientific novelty of proposed algo-
rithm lies in creation and processing of associative
arrays of external signal parameters estimates. This
approach provides flexible signal selection in panoramic
radio monitoring systems. Developed algorithm can
be used in existing and prospective radio monitoring
systems for RED identification and databases creation.

Prospects for further research in this area are
related to development of methods and algorithms
for signals selection by spectrum shape, as well as
processing filtered signals in time domain and improv-
ing methods for pulse durations estimation.

(a) (b)

Fig. 11. Table with parameter estimated for an analyzed signal before (a) and after filtering by channel
bandwidth (b)
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Алгоритм аналiзу радiочастотного
спектра та селекцiї сигналiв за зов-
нiшнiми параметрами

Бугайов М. В.

Для сучасного радiомонiторингу панорамний огляд
широкої смуги частот i селекцiя сигналiв складає йо-
го найважливiшу частину. Постiйне зростання кiлько-
стi радiоелектронних засобiв та розширення ширини
миттєвої смуги аналiзу у сучасних радiоприймальних
пристроях призводить до того, що одночасно може спо-
стерiгатися значна кiлькiсть аналогових та цифрових
сигналiв. Автоматична адаптацiя системи радiомонiто-
рингу до подальшої обробки сигналiв можлива завдяки
попереднiй селекцiї сигналiв. Метою дослiдження є роз-
робка алгоритму для селекцiї сигналiв у панорамних
системах радiомонiторингу за їх зовнiшнiми параметра-
ми. Сутнiсть запропонованого алгоритму полягає у ви-
явленнi зайнятих дiлянок радiочастотного спектра, ви-
значеннi центральної частоти та ширини смуги кожного
каналу, оцiнюваннi рiвня шуму та вiдношення сигнал-
шум. Утворення частотних каналiв дозволяє проводити
фiльтрацiю сигналiв та оцiнювати тривалостi iмпуль-
сiв, а також завантаженiсть кожного каналу. Оцiнки
значень параметрiв для кожного фрагменту сигналу та
частотного каналу записуються в асоцiативнi масиви,
що в подальшому полегшує селекцiю сигналiв. Через
мiнливiсть шуму та каналу поширення оцiнки значень
параметрiв сигналiв для кожного фрагменту сигналу
будуть випадковими величинами. Для отримання надiй-
них оцiнок центральної частоти та ширини смуги сигна-
лу проведено їх додаткову обробку шляхом групування
вимiряних значень. Доступ до даних масиву можна
здiйснювати як за номером частотного каналу (ряд-
ки таблицi), так i за параметрами сигналiв (ключами),
якi є заголовками стовпцiв таблицi. Асоцiативнi зв’язки
мiж даними забезпечать гнучку фiльтрацiю сигналiв
за будь-якими комбiнацiями параметрiв. Для перевiрки
розробленого пiдходу було проаналiзовано смугу ча-
стот 933-953 МГц та використано контейнер для даних
DataFrame Multi Index пакету Pandas мови програмува-
ння Python. Дана структура забезпечує багаторiвневу
iндексацiю, гнучкий доступ до даних та широкий набiр
iнструментiв для їх оброблення та модифiкацiї. Розро-
блений алгоритм може бути використаний в iснуючих
та перспективних системах радiомонiторингу для iден-
тифiкацiї радiоелектронних засобiв та формування баз
даних.

Ключовi слова: радiочастотний спектр; селекцiя си-
гналiв; зовнiшнi параметри; радiомонiторинг; асоцiатив-
ний масив
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