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The study is dedicated to the problem of classification of structural and functional development stage
of cardiomyocytes derived from the induced pluripotent stem cells with application of the digital image
processing methods and machine learning algorithms, in particular, neural networks. Cell regenerative
therapy has become one of the most promising treatment options for patients with heart failure. But since
cardiomyocytes are objects with a high level of complexity and have significant morphological variability,
automatic classification is complicated by the lack of implemented methods. That’s why researches in this
area are a major global public health priority. The initial data set used in this study is a publicly open
set of confocal microscopic images of cardiomyocytes which can be divided into five classes based on the
morphological features (the structure of the transverse T-tubule). A small amount of input data leads to the
need of using augmentation methods. Methods that prevent the alteration of the transverse T-tubule, which is
an important parameter for correct classification of the development of cardiomyocytes, are used. Histogram
equalization technique is used to enhance the contrast and dynamic range of the confocal microscopic images
with the method of contrast-limited adaptive equalization. This helped to improve the local contrast of the
analyzed images and highlight the main elements of the cardiomyocyte. Finally, Chan—Vese method, which
belongs to the regional segmentation methods, is chosen for the image segmentation and removing artifacts
and/or parts of other cells from the image. A pre-processed and augmented dataset is used for training of the
convolutional neural network having an architecture with hierarchical structure and residual block usage.
The model is evaluated based on the confusion matrix and the heat maps of different convolutional layers
are analyzed. Images from the classes with a large number of mutual errors are also considered. Based on
the analysis, several classes of structural and functional development of cardiomyocytes are combined. Final
accuracy of the model for defining the cardiomyocytes maturation stage achieved 77%.
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Introduction

Heart failure is a pathological condition that occurs
as a result of various heart diseases that reduce the
pumping capacity of the heart, resulting in insufficient
blood circulation in the human body [1]. The main
cause of acute heart failure is acute coronary syndrome
[1].

Acute heart failure is a common pathological condi-
tion and one of the most common causes of total
mortality (16% of the world’s total deaths [2]). Accor-
ding to estimates, 1.5-2% of the entire population have
signs of chronic heart failure [2]. The frequency of
chronic heart failure increases with age, and according
to estimates, it occurs in 3-5% of people over 65 years of
age, and for people over 75 years of age, the frequency
of heart failure is 10% [2]. Heart failure affects more

than 64 million people worldwide. Therefore, attempts
to decrease its social and economic burden have become
a major global public health priority [3].

Cell regenerative therapy has become one of the
most promising treatment options for patients with
heart failure. Cardiomyocytes (contractile myocytes
of the heart muscle, which ensure the work of the
heart [4]) from human embryonic stem cells (ESCs)
and human induced pluripotent stem cells (PSCs)
show great opportunity as potential cell sources for
cardiac repair [5]. Both of these pluripotent stem
cell types have clear cardiomyogenic potential, which
favorably distinguishes them from many types of adult
stem cells, for which the ability to differentiate into
a significant number of definitive cardiomyocytes is
controversial [5]. In addition, both undifferentiated
ESCs and PSCs exhibit potent proliferative activity,
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making these cell types particularly attractive for cases
that require large numbers of cells (eg, replacement of
~ 1x10° cardiomyocytes lost after a typical myocardi-
al infarction) [6]. Cardiomyocytes derived from ESCs
and PSCs have an unambiguous cardiac phenotype,
showing spontaneous contractile activity and cardiac
mechanisms of excitation-contraction coupling [6].

Studies conducted on animal models show that
cardiomyocytes grown from PSC can partially
remuscularize heart infarction and improve contractile
function [7]. Caspi and colleagues demonstrated by
echocardiography the survival of PSC-CM grafts in
infarcted rat hearts at 8 weeks post-transplantation,
and improvements in the left ventricular size and
function in cardiomyocyte recipients compared with
controls at 4 and 8 weeks post-transplantation
[8]. Moreover, Shimizu and colleagues developed
an approach based on the scaffold-free cell sheets
transplanted directly onto the surface of the heart.
Cells can be efficiently delivered in the form of thin but
dense large-area cell constructs without cell loss [9]. In
general, positive trends in the research in this area and
increasing of the transplantation efficiency should be
noted.

There are several approaches to evaluating cardio-
myocytes grown from the pluripotent stem cells. One
of them is the measurement of the contractile ability
of cells [10]. Along with it, measurements of transi-
ent Ca2+ processes are performed [10]. These functi-
onal tests allow to assess the quality of the grown
cardiomyocytes population. The process of growing
cardiomyocytes from the pluripotent stem cells can be
divided into several stages [11] and the indicated tests
depend on the development stage. Given the above,
the development stage is evaluated by morphological
features using confocal microscope images [10].

Currently, there are several significant limitations
in the cultivation of cardiomyocytes and studies of their
development stages. For statistical analysis of the enti-
re population, it is necessary to assign a developmental
stage to each observed cardiomyocyte image according
to a complex set of object features and classificati-
on rules [10]. This approach is impractical and prone
to subjective errors. Considering the amount of data
required for statistical analysis, automatic image classi-
fication is more appropriate. Since cardiomyocytes are
objects with a high level of complexity and have signifi-
cant morphological variability, automatic classification
is complicated by the lack of implemented methods.

Therefore, this study considers and applies the
main methods of digital image processing and machi-
ne learning algorithms including neural networks for
the task of determining the stage of structural and
functional maturation of cardiomyocytes.

1 Materials and Methods

The data set used in this study is the publi-
cly available database Confocal Microscopy Images
of Cardiomyocyte Development Stages from IEEE
DataPort platform [12]. Regarding the specification
[12], cardiomyocytes are divided into five classes of
the development stage based on the morphological
features. The first stage of maturation is characteri-
zed by the lack of the membrane inclusions. The
presence of short (~ 2um), evenly spaced perpendi-
cular inclusions of the membrane and/or individual
long (>10 pm) tubules can be attributed to the second
stage. In the third stage, there is a network of longer
tubules (>10 pm) with both transverse and longitudi-
nal inclusions. The fourth stage of maturation is classi-
fied by a complex system of transverse tubuleswith
the obvious presence of longer (>2 pm) longitudinal
tubules and frequent areas devoid of tubules. The fifth
stage of maturation is typical for adult cardiomyocytes
and can be characterized by a complex system of
transverse tubules, with sparse longitudinal structures
that usually cover no more than 1-2 sarcomeres (from
~ 2um to ~ 4pm), filling the entire area of the cell,
except for the nuclei (Fig. 1).

Fig. 1. Confocal images of cardiomyocytes according to
their developmental stage

There are several limitations to obtaining images
by confocal microscopy. Only a part of such collected
images are high-quality images of intact and healthy
myocytes. The rest of the dataset consists of blank
images, images of dead cardiomyocytes, defocused
images of cardiomyocytes, and images of cell fragments.
Thus, after excluding poor-quality confocal images, a
total number of high-quality images available from the
dataset [12] is 111: 18 images for the first stage of
cardiomyocyte maturation, 23 for the second stage, 22
for the third stage, 22 for the fourth, and 26 for the
fifth stage. All images have a dimension of [1024; 1024]
pixels in the grayscale spectrum [12].

For further application of machine learning
methods, it is necessary to create a class-balanced data
set. There are two approaches to solving the problem.
The first one is to choose the number of images in each
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class according to the minimum amount (in this case
18 images) with the use of the unused data to evaluate
the trained model. The second approach is the use of
augmentation to equalize the number of images in each
class, which is chosen.

Confocal microscopy images of cardiomyocytes
contain artifacts and/or parts of other cells.
Segmentation methods should be used to obtain images
of healthy and whole cells prior to further processing.
Moreover, analyzed images in grayscale format require
additional processing of their brightness histogram
to improve image contrast, which positively affects
the quality of further machine learning. Also, a small
number of input images does not allow effective train-
ing. Thus, the training data set must be pre-processed
using segmentation of the input images, processing
of the brightness histogram of the segmented images
and augmentation (obtaining new images from the
pre-processed images).

The Chan-Vese method, which belongs to the
methods of region-based segmentation, is chosen as
a segmentation method [13,14]. Region-based models
use the statistical information of the image such as
amplitude, jumps in amplitude, autocorrelation functi-
on, etc. to construct boundaries, which gives many
advantages. Firstly, they do not depend on the image
gradient and can segment objects with weak boundari-
es with sufficient accuracy [13]. Secondly, by using
global region information, region-based models are
generally noise persistent [13]. The Chan-Vese model
can be described as [13,14]

argmine, c,.c (1 - Lenght(C)+v - Area(inside(C))+

+)\1/ (f(2) = e1)2dz +
inside(C)

+)\1 /outside(C)(f(m) - C2) dm) 7 (1)

where the first term penalizes the length of C (the
boundary of a closed set) to control the regularity.
The second term penalizes the enclosed area of C to
control its size. The third and fourth terms penalize
discrepancy between the piecewise constant model
and the input image f. Coefficients ¢; and co here
are values of piecewise-smooth function respectively
inside and outside of C. By finding a local minimizer
of this problem, segmentation is achieved as the best
two-phase piecewise constant approximation u of the
image f [13,14].

For additional optimization, a polygonal zone of
interest is used as the initial contour. The resulting
binary image is superimposed on the original image to
obtain the resulting image (Fig. 2). A binary image
should be understood as preserving (value “1” of a
binary image) the brightness of a pixel of the input
image, or reducing it to a zero value (value “0” of a
binary image).

(a)

(b)
Fig. 2. Input image with the polygonal zone of
interest (a) and resulting image (b)

The method of contrast-limited adaptive equali-
zation is used to process the brightness histogram,
which provides the most optimal improvements of the
local contrast of the image [15]. Several histograms are
calculated, each of which corresponds to a separate
area of the image, and are used to redistribute the
brightness of the image [16].

The transformation function f(x) is defined as [16]:

f(z) = Xo + (Xp-1 — Xo) c(z), (2)

where Xy, X1 are L discrete gray levels and ¢(z) is
probability density function [16]:

3)

where n; represents the number of times the level X}
is present in the input image x, N is the total number
of components in the input image [16].

Adjacent parts of the grid are merged using
interpolation methods to eliminate artificial boundaries
[16]. Contrast, especially in homogeneous areas, should
be limited to avoid enhancing any noise that may be
present in the image (Fig. 3).

Methods that prevent alteration of the transverse
T-tubule, which is an important parameter for classi-
fication, and also do not impact image contrast, are
chosen as augmentation methods. To create a class-
balanced data set, color inversion is chosen, which
refers to color space transformations (Fig. 4) [17] and
does not change the structure of cardiomyocytes [17]:

- I’in ) (4)

Iout = I’m,(w:

where [,,,4, is the maximum brightness value of a pixel
in the given data type.
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Fig. 3. Image brightness histogram processing:
(a) before processing, (b) after contrast-limited adapti-
ve equalization
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Fig. 4. Color inversion of the input image: (a) before
processing, (b) after color inversion

Source image

Geometric image transformations (rotation and fli-
pping [17]) are chosen to increase the number of images
(Fig. 5, Fig. 6). The new coordinates of the pixel
(z1,y1) when rotated by an angle © around (zo,yo)
are defined as [18]:

2o = cos(0) - (x1—x0) + sin(O) - (y1—yo),

y2 = —sin(0O) - (z1—x0) + cos(O) - (y1 —yo)- 5)

In order to preserve the dimensionality of the image,
cropping is performed.

Rotation angle:

Rotatlon angle:
60 120

Source image

Raotation angla:
180 240 300

Rotation angle: Raotation angle:

Fig. 5. Rotation of the input image

Source image Fliped image

Fig. 6. Flipping of the input image

Different augmentation approaches are
chosen, which allows to increase the differentiation of
the data. Each image is flipped and rotated with a
step of 15 degrees. This allowed us to obtain 48 new
images from an original one. Color inversion is used to
get a class-balanced data set with 27 original images
in each class. In this way, we obtained a class-balanced
data set, including 1296 images with a pre-processed
brightness histogram for each class.

2 CNN model design

Convolutional neural networks (CNNs) differ from
other neural networks by their high performance while
working with images, speech signals, or audio signals
[19].

The hierarchical structure of the CNN is used
in this study. The convolutional layer applies a
feature detector (two-dimensional array of weights that
represents a part of the image [20]) to the image region
and calculates the scalar product between the input
pixels and the filter [20]. Deeper layers use features
highlighted by the previous. Each individual part of the
model constitutes a lower-level pattern in the neural
network, and the combination of its parts represents
a higher-level pattern, creating a hierarchy of features
[20].
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After each CNN convolution operation, a rectifi-
ed linear unit (ReLU) transformation is applied to
the feature map as an activation function, which also
introduces nonlinearity into the model [20,21]. A recti-
fied linear function is a piecewise linear function that
outputs the input signal directly if it is positive,
otherwise the output is zero:

f(z) = max(0,x). (6)

The batch normalization layer is selected as an
additional layer at each layer of the hierarchical
structure. This layer standardizes each batch of inputs
to a certain level (performs normalization of the output
vector of parameters). This makes it possible to stabi-
lize the learning process and significantly reduce the
number of learning cycles required to create a network
[22].

The pooling layer (downsampling) performs di-
mensionality reduction by applying a weightless filter
and preserving the maximum weight coefficient, redu-
cing the number of parameters in the input data [20].

The fully connected layer solves the classificati-
on task [20] based on the features extracted by the

previous layers and their filters using the average cross-
entropy loss function, which can be expressed as [21]

Loss(y,y, W) =
1 & N N e’
= Z(yz In(g:) +(1—yi) In(1-7;)) + %HWHg ;
i=0
(7)

where 7, y are the original and predicted values, ||W||3
penalizes complex models and o > 0 is an integral
parameter that controls the amount of the penalty [21].
In gradient descent, the loss gradient V LossW with
respect to the weights is calculated from W [21]:
Wiy =W; — eVLoss@V, (8)
where 7 is the iteration step and e is the learning rate
with a value greater than zero [21]. The learning stops
when 7 reaches a given maximum number of iterations
or when losses are lower than a certain small number
[21].
The resulting model can be represented as
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Fig. 7. CNN model structure

This model represents complex functions, which
correlates well with solving the problem of classi-
fying the development stage of cardiomyocytes. At
the same time, it is possible to observe the effect of
degradation during deep learning (Fig. 8). The effect
is expressed in a decrease of a validation accuracy
(val acuracy) that indicates the accuracy of classifi-
cation of a randomly taken validation set after each
training period compared to increase of the train-
ing accuracy (correct predictions over the training
dataset).

This effect is due to the fact that deep networks
often have a gradient signal that quickly goes to zero
[23]. During the gradient descent, when returning from
the last layer back to the first, multiplication by the
weight matrix occurs at each step [23]. If the gradients
are small due to the large number of multiplications,
the gradient can decay to zero exponentially quickly.
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Fig. 8. CNN model degradation effect

The solution to this problem can be in using a
residual block. The idea is that instead of learning the

layers on the base mapping, let the network match

the residual mapping [23]. So, instead of the initial

mapping H(x), let the network fit F'(z):
F(z)=H(z)—x= H(z)=F(z)+z. (9)

The approach is to omit the connection, which
reduces the opportunity of the non-useful layer to affect
the gradient signal [23]. Adding new layers will not
harm the performance of the model, as the regularizati-
on will skip them if those layers are not useful. If the
additional /new layers are useful, even with regulari-
zation, the weights or kernels of the layers will be
non-zero and the model performance (classification
accuracy) may increase (Fig. 9).

Such a model receives a processed image as an input
and the result is a vector containing the probabilities
that image belongs to each of the classes (development
stage).

Conv:32
Fully-
Down Down Down
Conv: Conv: Conv: | Conv: Conv: | conn
o Psam Py P sAm Py g Py sam 16 [P a2 ected:
pling pling pling 5

Fig. 9. CNN model structure with the residual block usage

3 CNN model training process

Data set is splitted into training and test data
parts. The training set of 1036 images per each class
(5180 images total) is additionally splitted with a split
factor of 0.2, which corresponds to 80% of the training
data (4144 images total for all classes) compared to
the validation data (used to evaluate the model at
each training step). The total accuracy estimate is
calculated based on a total amount of true predictions
across all classes and is performed after training on
unused data (260 images per each class). Accuracy for
each class separately is also calculated as the ratio of
the amount of true predictions to the total number
images in class. Results are presented in the form of a
confusion matrix. Total accuracy is 62.62% (48.46% for
class 1, 48.85% for class 2, 50% for class 3, 72.31% for
class 4 and 93.46% for class 5). CNN model evolution
and the training results can be seen in Fig. 10 and
Fig. 11.

In Figure 11 each cell contains the amount of true
or false predictions for each class comparatively to
the total amount of testing images. True predictions
are on the main diagonal and are included into the
total accuracy estimate. Column “SUM” contains an

accuracy estimate per class (the ratio of the amount of
true predictions to the total number of testing images
in class).

The results can be analyzed using heat maps of
different convolutional layers, which define the classifi-
cation of the development stage of the cardiomyocytes
(Fig. 12).
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Training Set
TARGET
Class1 Class2 Class3 Class4 Classb SUM
OUTPUT
126 54 34 28 18 260
Class1
9.69% 4.15% 2.62% 2.15% 1.38% 48.46%
51.54%
23 127 52 42 16 260
Class2
1.77% 9.77% 4.00% 3.23% 1.23% 48.85%
51.16%
8 15 130 87 22 260
Class3
0.46% 1.15% 10.00% 6.69% 1.69% 50.00%
50.00%
1 1 23 188 a7 260
Class4
0.85% 0.08% 1.77% 14.46% 2.85% 72.31%
27.69%
0 0 4 13 243 260
Sasss 0.00% 0.00% 0.31% 1.00% 18.69% 93.46%
6.54%
166 197 243 358 336 814 /1300
L 75.90% 64.47% 53.50% 52.51% 72.32% 62.62%
24.10% 35.53% 46.50% 47.49% 27.68% 37.38%
Fig. 11. Confusion matrix of the trained model
00 a0 60 om0 1000 It can be seen that the first layers of CNN high-

150

250

Fig

. 12. Heat maps of convolutional layers: 2 (a), 4 (b),
8 (c), 16 (d), 32 (¢)

light the shape and structure of cardiomyocytes, while
the deeper layers increase the weights of factors that
emphasize the structure of transverse T-tubules of a
cardiomyocyte. It can also be shown by superimposing
a heat map on the initial image of the cardiomyocyte.
The reduction of the dimensionality of the heat map
can be also seen, which is the result of the downsamp-
ling layer (Fig. 13).

Fig. 13. Initial image (a) to the heat map (b)
comparance

A large percentage of mutual errors between the
first and second, as well as the third and fourth grades
can be seen from the confusion matrix. This may indi-
cate poor differentiation of the indicated development
stages of cardiomyocytes.

The examples of images belonging to the first and
second classes and classified with mutual errors are
shown in Fig. 14. The weak differentiation of the
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maturation stage of cardiomyocytes, as well as the
focus of the heat map on the borders of cardiomyocytes
but not on the structure of transverse T-tubules can
be seen in heat-maps. This is due to their absence or
early stage of their development. This also explains the
high number of errors for the specified classes generally.
A similar situation can be seen with images of the

(1)

)

(a)

third and fourth classes (Fig. 15). Here, the structure
of transverse T-tubules is poorly distinguished due to
weak boundaries and a chaotic structure. Instead, a
strong mutual differentiation of pairs of the first and
second stages and the third and fourth stages can be

seen.

a0 loo0

(b) ()

Fig. 14. Heat map (a), initial image (b) and matching result (c) for the first (1) and second (2) classes
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Fig. 15. Heat map (a), initial image (b) and matching result (c) for the third (1) and fourth (2) classes
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If we combine the classes that show a large number
of mutual errors, namely, define the first and second
classes as those that have an initial development stage,
and the third and fourth — transitional, then after new
model training and testing we have the following error
matrix (Fig. 16).

Training Set
TARGET
Class1 Class2 Class3 Sum
QUTPUT
330 156 34 520
Class1
25.38% 12.00% 2.62% 63.46%
36.54%
33 428 59 520
Class2
2.54% 32.92% 4.54% 82.31%
17.69%
0 17 243 260
Class3
0.00% 1.31% 18.69% 93.46%
6.54%
363 601 336 1001 /1300
sum 90.91% 71.21% 72.32% 77.00%
9.09% 28.79% 27.68% 23.00%

Fig. 16. Confusion matrix after class merging where

class 1 is the initial development stage, class 2 is the

transitional development stage and class 3 is developed
cardiomyocytes

After combining the classes, the resulting accuracy
reaches 77% (63.46% for initial development stage,
82.31% for the transitional development stage and
93.48% for developed cardiomyocytes). To further
improve the classification accuracy, the architecture of
CNN should be improved using deeper layers and more
original cardiomyocyte images should be extracted.

It should be noted that increasing the amount of
data by augmentation does not provide the proper
improvement in classification accuracy.

For comparison, the first approach to preparing the
training data set (to choose the number of images in
each class according to the minimum amount with the
use of the unused data to evaluate the trained model)
with a dramatical increasing percentage of augmented
data was used. Here, training took place in several
iterations due to the large amount of data. The resul-
ting accuracy of this approach is 64% without combi-
ning classes. The increase in the training accuracy
estimate is due to the fact that the validation data
may contain features or parts of the training images
that affect the training accuracy estimate (Fig. 17).

Conclusion

Research methods of the cardiomyocytes grown
from the pluripotent stem cells and the main directi-
ons of their use were considered. Also, the need for
automated recognition of their maturation stage was
shown.

10 Iteration: 1. Accuracy: 0.824

0.8

0.6

Accuracy

0.4 —— accuracy
val_accuracy
0.2

0.0 05 10 15 2.0 25 30 35 40
Epoch
Iteration: 2. Accuracy: 0.963

Iy
=3
,

IS4
o™

Accuracy
=3
o

0.4 4 —— accuracy
val_accuracy
0.2 T T T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
Epoch
Iteration: 3. Accuracy: 0.932
1.0
0.8 -
>
9
el
5 0.6
¥
<
0.4 1 —— accuracy
val_accuracy
0.2 T T T T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0 3.5 4.0
Epoch
Iteration: 4. Accuracy: 0.755
1.0+
0.8 4
>
g
©
5 0.6 4
g
<
0.4 1 —— accuracy
val_accuracy
0.2 T T T T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0 3.5 4.0
Epoch
10 Iteration: 5. Accuracy: 0.978
0.8
>
[0
e
5 0.6
5
<
0.4 4 —— accuracy
val_accuracy
0.2

OjO ().‘5 1.‘0 1.‘5 2.‘0 2.‘5 3.‘0 3.‘5 4.‘(]
Epoch

Fig. 17. CNN model training with high augmented

images percentage

The original data set (pre-classified confocal images
of cardiomyocytes) is prepared by digital image
processing methods, which includes segmentation, bri-
ghtness histogram processing and augmentation. The
Chan—Vese method, which belongs to the regional
segmentation methods, is chosen as the segmentati-
on method. It does not depend on the image gradi-
ent and can segment objects with weak boundari-
es and is robust to noise due to the use of global
region information. To process the image brightness
histogram, the method of contrast-limited adaptive
equalization is used, which has the ability to improve
the local contrast of the image and reduce noise in the
resulting image. For augmentation, methods (image
rotation and flipping) that prevent the alteration of the
transverse T-tubule, which is an important parameter
for correct classification, and also do not affect the
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contrast of the image, which is an important parameter
for highlighting the structure of the transverse T-
tubule were used. To perform the equalization of the
number of images in each class, the color inversion
method is used, which also does not affect the structure
of the transverse T-tubule and does not greatly affect
the differentiation of the augmented data. The result-
ing amount of images after augmentation is 1296 for
each stage of cardiomyocyte maturation, 1036 of them
are used as training data.

To solve the problem of classification of the
development stage of cardiomyocytes, a convolutional
neural network is used, which has high performance
when working with images. The architecture of a
convolutional neural network with a hierarchical
structure and residual block usage is built and trained
based on the prepared data.

The evolution of model training and heat maps of
different convolutional layers are shown. The classifi-
cation accuracy is evaluated using images not used in
training. The resulting accuracy is 62.62% for 5 classes
classification task (48.46% for class 1, 48.85% for class
2, 50% for class 3, 72.31% for class 4 and 93.46%
for class 5). The confusion matrix and images of
classes that showed a large number of mutual errors
were analyzed. Based on the analysis, the classes were
combined. The images of the first and second classes
are assigned to the initial stage of development, and
the third and fourth — to the transitional stage. After
merging, the accuracy of the model for 3 maturati-
on stages recognition achieved 77% (63.46% for ini-
tial development stage, 82.31% for the transitional
development stage and 93.48% for developed cardio-
myocytes).

Based on the results of the analysis, it was point-
ed out the need for further research in the field of
growing cardiomyocytes from pluripotent stem cells
in order to highlight more original images of cardio-
myocytes and determine more accurate classification
parameters. Further increasing the number of images
using augmentation methods and the number of iterati-
ons during training does not give the desired results.
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Knacudikarisa cramil CTPYKTYPHO-
dbyHKITiOHATIBHOTO PO3BUTKY KapAaiomio-
IUTIB 3a JOIOMOIOI0 METOAIB MAIIUMHHO-
ro HaBYAHHHA

Bowndapes B. P., Isanvro K. O., Iseanywxina H. T.

Jociipkenns npucBa4eHo mpobJsiemi Kiacudikanii cra-
il CTPYKTYypHO-(DYHKIIOHAJIBHOTO TO3PIBAHHS KapAioMio-
WUTIB, OTPUMAHNX 3 IHIYKOBAHUX IIJIIOPUIIOTEHTHUX CTOB-
OypoBHX KJ/THH, 13 3aCTOCYBAaHHAM MeTOAIB ImdPOBOL
00pOoOKM 300parKeHb Ta AJTOPUTMIB MAIMTMHHOTO HABYAH-
Hs, 30KpeMa HeHpoHHMX Mepexk. KnThuHHa pereHepaTuBHA
Tepallisd Crajia OJHMM i3 HAHOLIbII I[EePCIEKTUBHUX Bapi-
aHTIB JIIKYBaHHS TAI[EHTIB i3 CEpPIEBOI0 HEIOCTATHICTIO.
Ate ockimbKm KapaioMionuTu € 06’€KTaMu BECOKOTO PIBHS
CKJIQJHOCTI T4 MAOTh 3HAYHY MODPQOIOridHy MIHIUBICTD,
aBTOMATUYHA KJAaCU(piKallis YCKIATHIOETHCS BiICYTHICTIO

peasizoBaHuX MeTOMiB. TOMy HOC/iIzKeHHS B Miil ramy3si €
BaKJIMBUM TIPIOPUTETOM B TaJLy3i 0XOpoHu 3710poB’s. [Towa-
TKOBUI HAOIp JAHUX, BUKOPUCTAHUHN y IbOMY [IOCJIiI?KEeHHI,
€ 3araJbHOJOCTYIHUM HA0OPOM KOHQOKAJIHHUX MiKPOCKO-
MYHUX 300parkeHb KapIiOMIOIUTIB, sTKi MOXKHA PO3IIIUTH
Ha II'ATh KJIACIiB Ha OCHOBI MOPQO/IOTIIHIX 03HAK (CTPYKTY-
pu nonepeunnx T-kamasnpnis). Hesesmkwmit ob6car Bximamx
JAHUX TIPU3BOIUTH JI0 HEOOXiTHOCTI BUKOPUCTAHHSI METOIiB
ayrmenTaril. BukopucroByBasucst meromu, 1o 3amobira-
OTh aJIbTePAIlil IMOIepedHoro T-KaHaJIbIs, 0 € BayKIUBUM
TmapaMeTpoM s TPABUILHOI Kiacudikamii cTaaii po3su-
TKY KapioMiomuTiB. /g HigBUINEHHS KOHTPACTHOCTI Ta
OUHAMIYHOTO [iamna30Hy KOHMOKAIPHUX MIKPOCKOIIYTHIX
300pa’keHb BUKOPHUCTOBYBABCS METOJ BUPIBHIOBAHHS TiCTO-
TpaMu 3a JOIOMOTOI0 METOAY aJallTUBHOIO BUDIBHIOBAHHS
3 obmexkeHrM KOHTpacToM. Lle /103BOJIMI0 MOKPAIIUTH JI0-
KaJIbHWII KOHTPACT 300paykeHb 1 BUIIINTH OCHOBHI CTPY-
KTypHI esieMeHTH KapzmiomionmTis. Hapemti, meron Yan-
Bese, skuil Ha/Ie2KUTH 0 METOIB PEriOHAJIBHOI CerMeHTa~
i1, OyB OOpaHwMii 15T CErMeHTaIl1 300paskeHb Ta BUIAJIEHHS
apredakTie Ta/ab0 YACTHH IHIIUX KJITHH 13 300parkeHb.
O6pobutenuii i ayrmenToBanuil HabIp JAHUX BUKOPUCTOBY-
BaBCd /I HABYAHHS 3rOPTKOBOI HEHWPOHHOI MepexKi, IImo
Ma€ apXITeKTypy 3 i€papXigHOI0 CTPYKTYPOIO Ta BUKODH-
CTaHHAM 3a/IUMIKOBUX Os0KiB. Momenp Oymo orimeno Ha
OCHOBI MaTpHIll MOMIJIOK, TAKOXK OYJI0 TPOAHAJII30BAHO Te-
IJIOBI KApTH PI3HUX 3rOPTKOBUX ImapiB. Bymm posrmanyTi
300paKeHHs 3 KJIACiB 3 BEJIUKOIO KIJIbKICTIO B3A€EMHHUX IIO-
MuaoK. Ha ocHOBI mpoBeneHOTO aHa3y JeKijibKa KJIAciB
CTPYKTYPHO-(DYHKITIOHATHHOTO PO3BUTKY KapPAiOMIOIUTIB
O6ymu 06’enmani. OcraroyHa TOYHICTD MOZENL i BU3HA-
YeHHs CTaJii JO3piBaHHA KapAiOMIiOIUTIB mocaria 77%.

Karouost caosa: xapaiomioruT; CrToBOYpPOBI KIIiTHHMY,
00pobOka 300parkeHb; MAIIWHHE HABYAHHS, MpobJeMa Ma-
MIUHHOTO HABYAHHS; KJIacH]IKallisa; TOUHICTh Kracudikaril;
HeWpPOHHA Meperka; 3rOPTKOBA HEMPOHHA Meperka
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