Dynamics of Bioimpedance Parameters on Three Frequencies During Ultrafiltration


  • O. B. Sharpan National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine
  • V. S. Mosiychuk National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine
  • M. O. Arkhypska National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine
  • B. V. Tkachuk National Technical Universitet "Kharkiv Politechnical institute"; Kharkiv Regional Clinical Center of Urology and Nephrology, Ukraine
  • R. S. Tomashevskyi National Technical Universitet "Kharkiv Politechnical institute", Ukraine




electrical bioimpedance, bioimpedansometry, hemodialysis, ultrafiltration


Background/Aim. At present, methods based on the analysis of non-invasively measured parameters of electrical bioimpedance for the diagnosis of the patient's biohydrality are of interest. The purpose of this article is to investigate the dynamics of electrical impedance parameters (module, phase angle, active and reactive components) of the human body during ultrafiltration of programmed hemodialysis at three frequencies of 20 kHz, 100 kHz, 500 kHz.
Equipment and Methods. For the research was used the hemodialysis system Fresenius Medical Care 5008C. This system provided the implementation of the ultrafiltration procedure profile. Also was used the hardware and software complex of monitoring bioimpedasometry TOR-M-1, adapted for hemodialysis procedure and conditions. Using these equipment the dependences of the modulus Z, the phase angle $ \varphi $, active R and the reactive X impedance components corrected to the body length of the patient H, the region of distribution of the bioimpedance vector relative to the tolerance ellipses and the dynamics of these parameters, depending on the volume of the ultrafiltrate and the profile of the ultrafiltration procedure were studied.
Dynamics of bioimpedance parameters. It was found that during the ultrafiltration has a characteristic complex nonlinear behavior of the impedance parameters for each individual patient. The intensity of this nonlinearity increases with increasing frequency. It is expressively observed at higher frequencies of 100 kHz and 500 kHz.
Interpretation of Impedance Dynamics with Tolerance Ellipses. The non-stationary oscillatory character of the parameter dynamics testifies to the complexity of the individual transient processes of redistribution of volumes of human water sectors in the process of hemodialysis and associated with changes in the ratio of intracellular, extracellular fluids and blood, the structural composition of the liquid. This causes fast flowing changes in active conductivity in the intercellular environment and reactive conductivity due to the action of polarization processes on the dielectric structures of biological tissues.
Discussion and Conclusion. Measurements and cumulative analysis of the parameters of electrical impedance directly in the process of hemodialysis allows to objectively monitor the progress of the patient's functional state in real time with an assessment of the presence or absence of a `dry weight 'level, evaluate the nature of the processes of redistribution of intracellular and extracellular sectors of the body and blood, and the differences in the course of the process of ultrafiltration of patients. This can be the basis, if necessary, for promptly adjusting the ultrafiltration process. Widening of the impedance measurement bandwidth enhances the diagnostic capabilities of such monitoring and the timely correction of the ultrafiltration procedure.

Author Biographies

O. B. Sharpan, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Sharpan Oleh

V. S. Mosiychuk, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Mosiichuk Vitalii

M. O. Arkhypska, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Arkhypska Mariia

B. V. Tkachuk, National Technical Universitet "Kharkiv Politechnical institute"; Kharkiv Regional Clinical Center of Urology and Nephrology

Tkachuk Bogdan

R. S. Tomashevskyi, National Technical Universitet "Kharkiv Politechnical institute"

Tomashevskyi Roman


Vishnevskii K.A., Gerasimchuk R.P. and Zemchenkov A.Y. (2014) «Dry weight» correction in hemodialysis patients based on the results of bioimpedance vector analysis. Nephrology (Saint-Petersburg), Vol. 18, No 2, pp. 61-71. (In Russ.)

Chang T.I., Paik J., Greene T., Desai M., Bech F., Cheung A.K. and Chertow G.M. (2011) Intradialytic hypotension and vascular access thrombosis. Journal of the American Society of Nephrology, Vol. 22, No. 8, pp. 1526-33. DOI: 10.1681/asn.2010101119

Hekmat R, Ahmadi M, Fatehi H., Dadpour B. and Fazelenejad A. (2011) Correlation between asymptomatic intradialytic hypotension and regional left ventricular dysfunction in hemodialysis patients. Iranian Journal of Kidney Diseases, Vol. 5, No 2, pp. 97-102.

John A.S., Tuerff S.D., Kerstein M.D. (2000) Nonocclusive mesenteric infarction in hemodialysis patients. American Journal of Roentgenology, vol. 174, no. 4, pp. 1169-1169. DOI: 10.2214/ajr.174.4.1741169a

Mizumasa T., Hirakata H., Yoshimitsu T., Hirakata E., Kubo M., Kashiwagi M., Tanaka H., Kanai H., Fujimi S. and Iida M. (2004) Dialysis-related hypotension as a cause of progressive frontal lobe atrophy in chronic hemodialysis patients: a 3-year prospective study. Nephron Clinical Practice, Vol. 97, No. 1, pp. c23-c30. DOI: 10.1159/000077592

Shoji T, Tsubakihara Y, Fujii M, Imai E. (2004) Hemodialysis-associated hypotension as an independent risk factor for two-year mortality in hemodialysis patients. Kidney International, Vol. 66, No. 3, pp. 1212-1220. DOI: 10.1111/j.1523-1755.2004.00812.x

Strokov A.G., Terekhov V.A., Poz Y.L., Kryshin K.N. and Kopylova Y.V. (2015) Persistent and Intermittent Hyperhydration in Patients on Program Haemodialysis: Methods of Evaluation and Correction. Russian Journal of Transplantology and Artificial Organs, Vol. 17, No 1, pp. 103-108. (In Russ.) DOI:10.15825/1995-1191-2015-1-103-108

Rakhmatullina L.N. and Gurevich K.Y. (2013) Application bioimpedance body composition monitor (BCm) in clinical practice in dialysis patients (literature review). Nefrologiya, Vol. 17, No 4, pp. 49-57.

Grimnes S., Martinsen O.G. (2008) Bioimpedance and bioelectricity basics. Amsterdam: Elsevier, 471 p.

Tornuev Y.V., Nepomnyaschikh D.L., Nikityuk D.B., Lapiy G.A., Molodykh O.P., Nepomnyaschikh R.D., Koldysheva E.V., Krinitsyna Y.M., Balakhnin S.M.,Manvelidze R.A., Semenov D.E., Churin B.V. (2014) Diagnostic capability of noninvasive bioimpedance. Fundamental Research, No. 10, pp. 782-788.

Nikolaev D.V., Smirnov A.V., Bobrinskaya I.G. and Rudnev S.G. (2009) Bioimpedansnyi analiz sostava tela cheloveka [Bioimpedance analysis of human body composition], Moskow, Nauka, 392 p.

Seytlin G.Y., Vashura A.Y., Konovalova M.V., Balashov D.N., Maschan M.A. and Belmer S.V. (2013) Value of bioimpedance analysis and anthropometry for complication prediction in children with malignant and non-malignant diseases after hematopoietic stem cells transplantation. Oncohematology. Vol. 8, Is. 3, pp. 48-54. DOI:10.17650/1818-8346-2013-8-3-48-54

Cornish B.H., Ward L.C., Thomas B.J., Jebb S.A. and Elia M. (1996) Evaluation of multiple frequency bioelectrical impedance and Cole-Cole analysis for the assessment of body water volumes in healthy humans. Eur J Clin Nutr, Vol. 50, Iss. 3, pp. 159–164.

Коtanko P., Nathan W. and Zhu L.F. (2008) Curent state of bioimpedance technologies in dialiysis, J. Med. Nephrology Dialysis Transpl, Vol. 23, Is. 3, pp. 808-812. DOI: 10.1093/ndt/gfm889

Colín-Ramírez E., Castillo-Martínez L., Orea-Tejeda A., Vázquez-Durán M., Rodríguez A.E. and Keirns-Davis C. (2012) Bioelectrical impedance phase angle as a prognostic marker in chronic heart failure. Nutrition, Vol. 28, Is. 9, pp. 901-5. DOI: 10.1016/j.nut.2011.11.033

Santarpia L., Marra M., Montagnese C., Alfonsi L., Pasanisi F. and Contaldo F. (2009) Prognostic significance of bioelectrical impedance phase angle in advanced cancer: preliminary observations. Nutrition, Vol. 25, No 9, pp. 930–1. DOI: 10.1016/j.nut.2009.01.015

Yaroshenko V.T. and Sharpan O.B. (2009) Bioimpedancometry Variants in Studies of Human Age Physiology, Naukovi visti NTUU KPI, No 1, pp. 26-29. (in Ukrainian)

Gupta D., Lammersfeld C.A., Vashi P.G., King J., Dahlk S.L., Grutsch J.F. and Lis C.G. (2008) Bioelectrical impedance phase angle as a prognostic indicator in breast cancer. BMC Cancer, 8:249. DOI: 10.1186/1471-2407-8-249

Barni S., Fort A., Becatti M., Fiorillo C., Mugnaini M., Vignoli V., Addabbo T., Pucci N. and Novembre E. (2017) Detection of Allergen-IgE interaction in Allergic Children Through Combined Impedance and ROS Measurements. IEEE Transactions on Instrumentation and Measurement. Vol. 66, No. 4, pp. 616-623. DOI: 10.1109/tim.2016.2640478

Paterno A., Hermann L. and Bertemes-Filho P. (2012) Efficient Computational Techniques in Bioimpedance Spectroscopy, Applied Biological Engineering - Principles and Practice, InTech, DOI: 10.5772/36307

Piccoli A. (1998) Identification of operational clues to dry weight prescription in hemodialysis using bioimpedance vector analysis. Kidney International, Vol. 53, Iss. 4, pp. 1036-1043. DOI: 10.1111/j.1523-1755.1998.00843.x

Piccoli A. (2004) Bioelectric impedance vector distribution in peritoneal dialysis patients with different hydration status. Kidney International, Vol. 65, Iss. 3, pp. 1050–1063. DOI: 10.1111/j.1523-1755.2004.00467.x

Bosy-Westphal A., Danielzik S., Dörhöfer R.P., Piccoli A. and Müller M.J. (2005) Patterns of bioelectrical impedance vector distribution by body mass index and age: implications for body-composition analysis. The American Journal of Clinical Nutrition, Vol. 82, Iss. 1, pp. 60-68. DOI: 10.1093/ajcn/82.1.60

Walter-Kroker A., Kroker A., Mattiucci-Guehlke M. and Glaab T. (2011) A practical guide to bioelectrical impedance analysis using the example of chronic obstructive pulmonary disease. Nutrition Journal, 10:35. DOI: 10.1186/1475-2891-10-35

Mosiychuk V. S., Timoshenko G. V. and Sharpan O. B. (2015) Wideband bioimpedance meter with the active electrodes. Electronics and Nanotechnology, pp. 300-303. DOI: 10.1109/elnano.2015.7146896

Terekhov V. A. (2015) Status gidratatsii u bol'nykh na programnom gemodialize: metody otsenki i korrektsii [Status of hydration in patients on programmed hemodialysis: methods of assessment and correction. Cand. of Medical Sci. Diss.], Moskow, 122 p.





Radioelectronics Medical Technologies