Acoustic method of atmosphere probing. Modern state and development prospects


  • Liu Chang Heilongjiang Bayi Agricultural University, China
  • I. K. Ibraimov Kharkiv National University of Radioelectronics, Ukraine
  • A. Yu. Panchenko Kharkiv National University of Radioelectronics, Ukraine



turbulence, sound in an inhomogeneous medium, antenna directivity, wind, temperature, humidity, wind shear


Acoustic methods of atmosphere sounding allow us to track the meteorological situation in the atmospheric boundary layer at low costs on-line. The urgency of the these methods development is determined by the need to monitor the environment in conditions of man-caused load increasing. Acoustic waves are much more sensitive to changes in air parameters than electromagnetic waves. However, at present, their effectiveness, compared with laser, thermal and other systems is relatively low. The development of the acoustic sounding method has two directions: the improvement of theoretical descriptions of the interaction of acoustic waves with the atmosphere and the improvement of sounding techniques. Therefore, the evaluation of the most promising paths requires a detailed analysis of the current state, both theoretical foundations and technical implementations of the method. The paper shows that modern acoustic locators are performed at a high technical level and at present the main problem of the method is the lack of an adequate theory of processing the information obtained. The most urgent problems of the method development at the present stage are formulated in the work. They relate to the inverse problems of the fundamental problems of the theory of sound scattering in an inhomogeneous moving medium. Therefore, at present, a number of consecutive progressive steps are required to solve applied problems in the direction of adapting existing achievements to the use in sodar’s systems. Among the urgent tasks that can be developed at the current stage, we can identify the most important. This is a refinement of models of acoustic waves reflection in a stable atmospheric boundary layer in the period of nighttime temperature inversions. Analysis of multi-path probing possibilities for various phase relationships in emitted signals is carried out. Analysis of the prospects for the use of modulated sounding signals is conducted. Naturally, in addition to the above, there are more complex tasks. These include, for example, the reflection analysis in a compressible medium or the optimization of the initial relationships. In practical terms, a clear justification for simplifications in specific tasks is promising.

Author Biographies

Liu Chang, Heilongjiang Bayi Agricultural University

Liu Chang, PhD

I. K. Ibraimov, Kharkiv National University of Radioelectronics

Ibraimov I. K.

A. Yu. Panchenko, Kharkiv National University of Radioelectronics

Panchenko A. Yu., Doctor of physical and mathematics sciences, Professor


Krasnenko N.P. (1986) Akusticheskoye zondipovaniye atmosfepy [Acoustic sounding of the atmosphere], Hovosibirsk, Nauka, 166 p.

Kallistratova M.A. and Kon A.I. (1985) Radioakusticheskoye zondirovaniye atmosfery [Radioacoustic sounding of the atmosphere], Moskow, Nauka, 197 p.

Skudrzyk E. (1971) The Foundations of Acoustics. Basic Mathematics and Basic Acoustics, Springer-Verlag, DOI: 10.1007/978-3-7091-8255-0

Loytsyanskiy L.G. (1978) Mekhanika zhidkosti i gaza [Mechanics of liquid and gas], Мoskow, Nauka, 736 p.

Isakovich M.A. (1973) Obshchaya akustika [General acoustics], Мoskow, Nauka, 496 p.

Amamou M.L. (2016) A theoretical and numerical resolution of an acoustic multiple scattering problem in three-dimensional case. Acoustical Physics, Vol. 62, Iss. 3, pp. 280-291. DOI: 10.1134/s1063771016030015

Kopiev V.F., Palchikovskiy V.V., Belyaev I.V., Bersenev Y.V., Makashov S.Y., Khramtsov I.V., Korin I.A., Sorokin E.V. and Kustov O.Y. (2017) Construction of an anechoic chamber for aeroacoustic experiments and examination of its acoustic parameters. Acoustical Physics, Vol. 63, Iss. 1, pp. 113-124. DOI: 10.1134/s1063771017010043

Shanin A.V. and Korolkov A.I. (2015) Diffraction by an impedance strip I. Reducing diffraction problem to Riemann–Hilbert problems. The Quarterly Journal of Mechanics and Applied Mathematics, Vol. 68, Iss. 3, pp. 321-339. DOI: 10.1093/qjmam/hbv010

Korobov A.I., Shirgina N.V. and Kokshaiskii A.I. (2015) A pressure effect on the nonlinear reflection of elastic waves from the boundary of two solid media. Acoustical Physics, Vol. 61, Iss. 2, pp. 165-172. DOI: 10.1134/s1063771015020074

Denisov S.L. and Korolkov A.I. (2017) Investigation of noise-shielding efficiency with the method of sequences of maximum length in application to the problems of aviation acoustics. Acoustical Physics, Vol. 63, Iss. 4, pp. 462-477. DOI: 10.1134/s1063771017040017

Chen Y., Chen X., Huang Y., Bai Y., Hu D. and Fei S. (2016) Study of thermoviscous dissipation on axisymmetric wave propagating in a shear pipeline flow confined by rigid wall. Part I. theoretical formulation. Acoustical Physics, Vol. 62, Iss. 1, pp. 27-37. DOI: 10.1134/s1063771016010061

Liu X., Jiang H., Huang X. and Chen S. (2015) Theoretical model of scattering from flow ducts with semi-infinite axial liner splices. Journal of Fluid Mechanics, Vol. 786, pp. 62-83. DOI: 10.1017/jfm.2015.633

Agaltsov A. (2016) On the reconstruction of parameters of a moving fluid from the Dirichlet-to-Neumann map. Eurasian J. Mathematical and Computer Applications, Vol. 4, No 1, pp. 4-11. arXiv:1512.06367

Krylov V.V. (2014) Acoustic black holes: recent developments in the theory and applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 61, Iss. 8, pp. 1296-1306. DOI: 10.1109/tuffc.2014.3036

Agaltsov A.D. and Novikov R.G. (2016) Uniqueness and non-uniqueness in acoustic tomography of moving fluid. Journal of Inverse and Ill-posed Problems, Vol. 24, Iss. 3. DOI: 10.1515/jiip-2015-0051

Chen J., Bai X., Yang K. and Ju B. (2015) Simultaneously measuring thickness, density, velocity and attenuation of thin layers using V(z,t) data from time-resolved acoustic microscopy. Ultrasonics, Vol. 56, pp. 505-511. DOI: 10.1016/j.ultras.2014.09.019

Skvortsov B.V., Solntseva A.V., Borminskii S.A. and Rodionov L.V. (2016) Theoretics of remote acoustic monitoring of the level and density of fluid contacting media at the interface. Acoustical Physics, Vol. 62, Iss. 6, pp. 747-753. DOI: 10.1134/s1063771016060166

Zotov D.I., Shurup A.S. and Rumyantseva O.D. (2017) Vector field reconstruction of flows using the Novikov–Agaltsov functional algorithm and the additive correlation method. Bulletin of the Russian Academy of Sciences: Physics, Vol. 81, Iss. 1, pp. 101-105. DOI: 10.3103/s1062873817010312

Laykhtman D.L.(1970) Fizika pogranichnogo sloya atmosfery [Physics of the boundary layer of the atmosphere], Hydrometeoizdat, 342 p.

Draganov B. Kh. (2015) K voprosu o dinamike prizemnoy atmosfery [To the question of the dynamics of the surface atmosphere] Enerhetyka ta avtomatyka, Vol.3,pp.19-25.

Khrgian A. Kh. (1969) Fizika atmosfery [Physics of the Atmosphere] Hydrometeoizdat, 647 p.

Frik P.G. (2003) Turbulentnost': podkhody i modeli [Turbulence: Approaches and Models], Izhevsk, IKI, 292 p.

Banerjee T., Katul G.G., Salesky S.T. and Chamecki M. (2014) Revisiting the formulations for the longitudinal velocity variance in the unstable atmospheric surface layer. Quarterly Journal of the Royal Meteorological Society, Vol. 141, Iss. 690, pp. 1699-1711. DOI: 10.1002/qj.2472

Chamecki M., Dias N.L., Salesky S.T. and Pan Y. (2017) Scaling Laws for the Longitudinal Structure Function in the Atmospheric Surface Layer. Journal of the Atmospheric Sciences, Vol. 74, Iss. 4, pp. 1127-1147. DOI: 10.1175/jas-d-16-0228.1

Crivellaro B.L., Dias N.L. and Chor T. (2013) Spectral Effects on Scalar Correlations and Fluxes. American Journal of Environmental Engineering, Vol. 3, Iss. 1, pp. 13-17. DOI: 10.5923/j.ajee.20130301.03

Kolmogorov A.N. (1968) Local structure of turbulence in an incompressible viscous fluid at very high reynolds numbers. Soviet Physics Uspekhi, Vol. 10, Iss. 6, pp. 734-746. DOI: 10.1070/pu1968v010n06abeh003710

Monin A.S. and Yaglom A. M. (1965) Statisticheskaya gidromekhanika. Chast' 1 Mekhanika turbulentnosti [Statistical hydromechanics. Ch. 1 Mechanics of turbulence], Moskow, Nauka, 640 p.

Frost W. and Moulden T.H. eds. (1977) Handbook of Turbulence. Volume 1 Fundamentals and Applications, Plenum Press, 536 p. DOI: 10.1007/978-1-4684-2322-8

Koval'nogov N. N. (2010)Prikladnaya mekhanika zhidkosti i gazov [Applied Mechanics of Fluids and Gases], Ulyanovsk, Ul'yanovskiy gosudarstvennyy tekhnicheskiy universitet [Ulyanovsk State Technical University], 219 p.

Kasilov V.F.(2001) Spravochnoye posobiye po gidrogazodinamike dlya teploenergetikov [Reference book on hydrogasdynamics for heat and power engineering], Izd-vo Moskovskiy ênergeticheskiy institut[Moscow Institute of Energy Engineering]. 272p.

Vorontsov P.A. (1966) Turbulentnost' i vertikal'nyye toki v pogranichnom sloye atmosfery [Turbulence and vertical currents in the boundary layer of the atmosphere], Gidrometeoizdat, 296 p.

Byzova N.L. eds., Gargera E.K. and Ivanova V.N. (1991) Eksperimental'nyye issledovaniya atmosfernoy diffuzii i raschety rasprostraneniya primesi [Experimental studies of atmospheric diffusion and calculation of impurity diffusion], Gidrometeoizdat, 280 p.

Mahrt L. (2014) Stably Stratified Atmospheric Boundary Layers. Annual Review of Fluid Mechanics, Vol. 46, Iss. 1, pp. 23-45. DOI: 10.1146/annurev-fluid-010313-141354

Kang Y., Belušić D. and Smith-Miles K. (2015) Classes of structures in the stable atmospheric boundary layer. Quarterly Journal of the Royal Meteorological Society, Vol. 141, Iss. 691, pp. 2057-2069. DOI: 10.1002/qj.2501

Acevedo O.C., Costa F.D., Oliveira P.E.S., Puhales F.S., Degrazia G.A. and Roberti D.R. (2014) The Influence of Submeso Processes on Stable Boundary Layer Similarity Relationships. Journal of the Atmospheric Sciences, Vol. 71, Iss. 1, pp. 207-225. DOI: 10.1175/jas-d-13-0131.1

Cava D., Mortarini L., Giostra U., Richiardone R. and Anfossi D. (2016) A wavelet analysis of low-wind-speed submeso motions in a nocturnal boundary layer. Quarterly Journal of the Royal Meteorological Society, Vol. 143, Iss. 703, pp. 661-669. DOI: 10.1002/qj.2954

Vemado F. and Pereira Filho A. (2016) Severe Weather Caused by Heat Island and Sea Breeze Effects in the Metropolitan Area of São Paulo, Brazil. Advances in Meteorology, Vol. 2016, , pp. 1-13. DOI: 10.1155/2016/8364134

Sun J., Nappo C.J., Mahrt L., Belušić D., Grisogono B., Stauffer D.R., Pulido M., Staquet C., Jiang Q., Pouquet A., Yagüe C., Galperin B., Smith R.B., Finnigan J.J., Mayor S.D., Svensson G., Grachev A.A. and Neff W.D. (2015) Review of wave-turbulence interactions in the stable atmospheric boundary layer. Reviews of Geophysics, Vol. 53, Iss. 3, pp. 956-993. DOI: 10.1002/2015rg000487

Suarez A., Stauffer D.R. and Gaudet B.J. (2015) Wavelet-Based Methodology for the Verification of Stochastic Submeso and Meso-Gamma Fluctuations. Monthly Weather Review, Vol. 143, Iss. 10, pp. 4220-4235. DOI: 10.1175/mwr-d-15-0075.1

Sun J., Mahrt L., Nappo C. and Lenschow D.H. (2015) Wind and Temperature Oscillations Generated by Wave–Turbulence Interactions in the Stably Stratified Boundary Layer. Journal of the Atmospheric Sciences, Vol. 72, Iss. 4, pp. 1484-1503. DOI: 10.1175/jas-d-14-0129.1

Vercauteren N. and Klein R. (2015) A Clustering Method to Characterize Intermittent Bursts of Turbulence and Interaction with Submesomotions in the Stable Boundary Layer. Journal of the Atmospheric Sciences, Vol. 72, Iss. 4, pp. 1504-1517. DOI: 10.1175/jas-d-14-0115.1

Kehler S., Hanesiak J., Curry M., Sills D. and Taylor N. (2016) High Resolution Deterministic Prediction System (HRDPS) Simulations of Manitoba Lake Breezes. Atmosphere-Ocean, Vol. 54, Iss. 2, pp. 93-107. DOI: 10.1080/07055900.2015.1137857

Vercauteren N., Mahrt L., Klein R. (2016) Investigation of interactions between scales of motion in the stable boundary layer. Q J R Meteorol Soc,Vol. 142. pp.2424-2433. DOI:10.1002/qj.2835

Wentworth G., Murphy J. and Sills D. (2015) Impact of lake breezes on ozone and nitrogen oxides in the Greater Toronto Area. Atmospheric Environment, Vol. 109, pp. 52-60. DOI: 10.1016/j.atmosenv.2015.03.002

Curry M., Hanesiak J. and Sills D. (2015) A Radar-Based Investigation of Lake Breezes in Southern Manitoba, Canada. Atmosphere-Ocean, Vol. 53, Iss. 2, pp. 237-250. DOI: 10.1080/07055900.2014.1001317

Ram K., Singh S., Sarin M., Srivastava A. and Tripathi~S. (2016) Variability in aerosol optical properties over an urban site, Kanpur, in the Indo-Gangetic Plain: A case study of haze and dust events. Atmospheric Research, Vol. 174-175, pp. 52-61. DOI: 10.1016/j.atmosres.2016.01.014

Ostashev В.Е. (1991) Rasprostraneniye i rasseyaniye zvukovykh voln v turbulentnykh sredakh (atmosfere i okeane) [Propagation and scattering of sound waves in turbulent media (atmosphere and ocean)]. Optika atmosfery i okeana, Vol. 4, No 09, pp. 931–937.

Tatarskiy V.I. (1967) Rasprostraneniye voln v turbulentnoy atmosfere [Propagation of waves in a turbulent atmosphere], Moskow, Nauka, 548 p.

Brekhovskikh L.M. and Godin O.A. (1989) Akustika sloistykh sred [Acoustics of layered media], Moskow, Nauka, 416 p.

Liu Chang, Panchenko A. Yu., Slipchenko M. I. (2013) Radio acoustic sounding systems: part 1. The diffraction problem for a bistatic zone. Telecommunication and Radio Engeneering. Telecommunications and Radio Engineering, Vol. 72, Iss. 14, pp. 1289-1296 . DOI: 10.1615/TelecomRadEng.v72.i14.30

Liu Chang, Panchenko A. Yu. and Slipchenko M. I. (2013) Radio acoustic sounding systems: part 1. The diffraction problem for a bistatic zone. Telecommunication and Radio Engeneering, No 72(14), pp. 1289-1296. DOI: 10.1615/TelecomRadEng.v72.i14.30

Panchenko A.Y. (1997) Equation of State in the Set of Acoustics Equations for a Moving Non-Uniform Medium. Telecommunications and Radio Engineering, Vol. 51, Iss. 4, pp. 22-25. DOI: 10.1615/telecomradeng.v51.i4.20

Blokhintsev D. I. (1981) Akustika neodnorodnoy dvizhushcheysya sredy [Acoustics of an inhomogeneous moving medium], Moskow, Nauka, 206 p.





Telecommunication, navigation and radar systems, electroacoustics