Modeling of Electromechanical Characteristics of Piezoresonance Pressure Sensors with Membrane Control of the Interelectrode Gap of a Piezoelectric Element
DOI:
https://doi.org/10.20535/RADAP.2018.74.51-59Keywords:
overpressure sensor, piezoelectric element, excitation in the gap, elastic element, membrane, 3D model, numerical modeling, medical applications, sphygmographic signal, pulse waveAbstract
The paper considers the issues of increasing the simulation accuracy of perspective piezoresonance overpressure sensors with membrane control of the piezoelectric element interelectrode gap. A comparative analysis of elastic membrane elements characteristics made of alloys two different types, calculated by the existing methods for flat and corrugated membranes, and obtained by simulation in the COMSOL Multiphysics system is carried out. It is shown that the existing analytical methods for calculating membrane elements are of an approximate nature and allow only rough estimates to be obtained, since they do not take into account all the structural features of the elastic elements and are adapted to the experimental designs of sensors with a specific geometry. The elastic characteristics of the measuring diaphragm of pressure sensors with a variable interelectrode gap of excitation are calculated. The capacitance of the interelectrode gap of the membrane pressure sensor is determined. Numerical simulation of the stressed-deformed state of the corrugated membrane in the COMSOL Multiphysics software package was carried out. The operating characteristics of the piezoresonance sensor of excess pressure with variable inter electrode gap of excitation are studied. The developed three-dimensional model of the sensor of excessive pressure for medical applications makes it possible to significantly improve the accuracy of characteristics calculations of the stress-strain state of elements during their micro-displacements, remove the limitations on the structural features of the membrane and its attachment methods, and significantly shorten the time and costs for developing measuring transducers. The obtained results provide ample opportunities to optimize the design of the sensor, improve its accuracy and reduce the impact on it of destabilizing environmental factors.
References
Sharapov V.M., Musienko M.P. and Sharapova E.V. (2006) Pezoelektricheskie datchiki [Piezoelectric sensors]. Moskov, Tehnosfera, 628 p.
Dzhekson R.G. (2007) Noveyshie datchiki [The newest sensors], Moskov, Tehnosfera, 380 p.
Hilchenko G., Pidchenko S. and Taranchuk A. (2011) Pressure sensor, Patent RU2430344.
Taranchuk A. and Pidchenko S. (2012) Design Methodology to Construct Information Measuring Systems Built on Piezoresonant Mechanotrons with a Modulated Interelectrode Gap. Applied Measurement Systems. DOI: 10.5772/35746
Davies J.M., Bailey M.A., Griffin K.J. and (2012) Pulse wave velocity and the non-invasive methods used to assess it: Complior, SphygmoCor, Arteriograph and Vicorder. Vascular, Vol. 20, Iss. 6, pp. 342-349. DOI: 10.1258/vasc.2011.ra0054
Andreeva L.E. (1981) Uprugie elementyi priborov [Elastic elements of devices]. Moskov, Mashinostroenie, 392 p.
Borst R.d., Crisfield M.A., and Verhoosel C.V. (2012) Non-Linear Finite Element Analysis of Solids and Structures. DOI: 10.1002/9781118375938
COMSOL Multiphysics User’s Guide, 1234 р.
Kurowski P.M. (2018) Engineering analysis with solidworks simulation, SDC Publications, 596 p.
Marsi N., Majlis B.Y., Hamzah A.A. and Mohd-Yasin F. (2014) The Mechanical and Electrical Effects of MEMS Capacitive Pressure Sensor Based 3C-SiC for Extreme Temperature. Journal of Engineering, Vol. 2014, pp. 1-8. DOI: 10.1155/2014/715167
Downloads
Published
Issue
Section
License
Copyright (c) 2018 A. A. Taranchuk, S. K. Pidchenko, A. I. Zhyznevskyi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).