Efficient QPSK signal demodulation in channels with unfavorable conditions of radio reception
DOI:
https://doi.org/10.20535/RADAP.2019.78.13-18Keywords:
QPSK signal demodulation, adverse radio reception conditions, TDMA, feedforward, feedback, ISI, frequency distortionAbstract
The main task of the receiver in digital communication systems is to provide a minimum bit error when transmitted data is received. Therefore, the quality of digital communication largely depends on the quality of demodulation of signals in general. In addition, in channels with unfavorable conditions of radio receiving, which are characterized by rapid change in signal parameters due to time and frequency Doppler spread, as well as unknown characteristics of the main transmission channel, there are situations where the most modems don’t allow for high-quality receiving of the signal. Thus, increasing the efficiency of demodulation was and remains a relevant task for modern technology of radio receiving and signal processing. The article is devoted to the problem of signal reception with phase manipulation in channels with unfavorable transmission conditions, since in most modern digital communication systems, phase manipulation is the basis of the physical level of transmission. The existing solutions are analyzed and the method of hybrid signal demodulation is considered, which combines the algorithms of feedforward estimation of signal parameters with subsequent synchronization of parameters in feedback schemes. The initial estimates of the carrier frequency offset, phase, and time delay of the signal are calculated according to the known unique insertion and the obtained estimates are used when initializing the feedback circuits for instant entering into tracking mode. A comparative modeling of known traditional methods of demodulation and method of hybrid demodulation is done on an example of a signal with quadrature phase-shift keying (QPSK). Consequently, the obtained results confirm that in the conditions of rapid change of signal parameters the hybrid algorithm provides the minimum value of bit error, depending on SNR, in comparison with traditional methods. The considered synchronization approach can also be used for signals with other types of phase manipulation. Moreover, the proposed hybrid combination of feedback and feedforward algorithms allowed the use of feedback algorithms for signals with packet data transmission.Downloads
Published
2019-09-30
Issue
Section
Telecommunication, navigation and radar systems, electroacoustics
License
Copyright (c) 2019 O. S. Kruhlyk, O. Ya. Kaliuzhnyi, V. Yu. Semenov
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).