Frequency Dependences of the Rhinological Parameters of Electrical Bioimpedance in the Area of the Paranasal and Nasal Sinuses
DOI:
https://doi.org/10.20535/RADAP.2019.78.52-59Keywords:
electrical bioimpedance, bioimpedansometry, frequency dependencies, diagnosis of sinusitis, nasal sinuses, functional stateAbstract
Introduction. Possibilities of three-frequency broadband electrical bioimpedanceometry of the nasal and paranasal regions were investigated.Research methodology and equipment. The studies were performed experimentally non-invasively using a three-frequency wideband bioimpedance system TOR-M-1, adapted to the conditions and requirements of rhinological studies. The TOR-M-1 system provides the measurement of the module Z and the phase angle φ of the impedance of the human body sections at three frequencies of 20 kHz, 100 kHz and 500 kHz with programmatic calculation of active R, reactive X components of the impedance at these frequencies. Non-invasive impedance parameters were measured using a tetrapolar technique using paired stainless steel active electrodes connected to the human body in the area between the cheek and the hand.Results and Discussion. It is established that the values of the module, phase angle, active and reactive components of the impedance at these frequencies are individually individual for a particular person and change dynamically in the presence of rhinological diseases. The most characteristic features that characterize the normal and abnormal conditions of the nasal and paranasal tissues, are concentrated in the frequency dependences of the phase angle.Conclusions. Cole diagrams for groups of patients with certain phase-to-angle ratios at three frequencies show the possibility of determining different functional states of patients: the normal state, the presence of residual phenomena of rhinological diseases, while the subjective person feels normal and active disease. The results of impedance frequency parameters dynamics during respiratory disease are presented.Downloads
Published
2019-09-30
Issue
Section
Radioelectronics Medical Technologies
License
Copyright (c) 2019 O. B. Sharpan, V. S. Mosiychuk
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).