Detection-Recognition of Unmanned Aerial Vehicles using the Composed Auto-Regression Model of their Acoustic Radiation
DOI:
https://doi.org/10.20535/RADAP.2020.81.38-46Keywords:
unmanned aerial vehicle, acoustic signal, autoregressive model, power spectral density, detection, recognitionAbstract
When solving the actual task of detecting by its own acoustic emission (AE) unmanned aerial vehicles (UAVs), making a potential threat to various areas of human activity, it becomes necessary to distinguish its signal from all other acoustic noises. The application of the autoregression model, widely used in practice, is complicated by the need to use significantly high orders of the model, since the distinguishing features of the UAV acoustic signal that differ it from other signals are located in the low-frequency region of the spectrum. The article proposes the use of a composite autoregression model that adequately describes the correlation properties of a signal at significant time intervals and provides an increase in spectral resolution in the low-frequency region. Experimental studies carried out on using the proposed mathematical model show significant differences in the spectral power density (SPD) of UAVs AE from SPD of various sources’ noise, which improve the quality characteristics of the UAV detection-recognition problem. A simplified procedure is proposed for determining frequencies of SPD peaks of a long-term autoregression model without spectrum calculation, which is advisable to use when working in real time.Downloads
Published
2020-06-30
Issue
Section
Theory and Practice of Radio Measurements
License
Copyright (c) 2020 V. A. Tikhonov, V. M. Kartashov, V. M. Oleinikov, V. I. Leonidov, L. P. Timoshenko, I. S. Seleznev, М. V. Rybnikov
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).