Methodology and Results of Synthesis and Analysis of Potential Resilience for Noise Immunity Compensator of an Asynchronous Intermittent Interference Similar to a Useful Phase-Manipulated Signal
DOI:
https://doi.org/10.20535/RADAP.2020.82.14-24Keywords:
discrete parameter, decision-making rule, mutually non-orthogonal digital signals, intermittent noise, similar to a useful signal, potential resilienceAbstract
In telecommunication radio systems with random multiple-access (RMA), user signals are characterized by a random intermittent radiation mode and the occurrence of their collisions in the propagation medium, i.e. conflicts at the physical level. Practical interest belongs to the situations when the useful and interfering (intermittent) signals are asynchronous at clock points. It should also be noted that when there are intermittent mutually non-orthogonal signals along the length of the information error more than two, the detection-separation algorithms that are optimal in terms of the minimum probability of error in estimating the discrete parameter of the useful signal are too complex. Therefore, the simplest case is investigated here, when the interfering signal is the only one. An algorithm for demodulation of a binary phase-manipulated signal is observed, which is observed at the background of a similar asynchronous clock noise, which is characterized by a random intermittent radiation mode. The minimum probability of error in the discrete information parameter estimation of the useful signal is chosen as the criterion of optimum for the synthesis. It is also assumed that all non-information parameters of the useful signal and similar interference are precisely known. The distribution medium is considered to be stationary in time. These initial data for the synthesis allow obtaining in the analysis the potential limits of the noise immunity of the digital signal demodulation, which is observed at the background of a similar intermittent noise. The result is a «framework» of the demodulation-separation procedure, which should be subsequently supplemented with nodes (blocks) of continuous parameters estimation that are not informational - frequencies, initial phases, amplitudes, shapes of bending, clock points, etc. The algorithm for demodulating a digital signal under the influence of such an asynchronous intermittent interference turns out to be about twice as complicated in comparison with the previously known one, when the signal and the interference at the clock points were assumed to be synchronous. A characteristic feature of the obtained compensation algorithm is the absence of feedback - the compensation procedure is performed forward, at the outputs of the signal correlators and interference. The result is generalized to the case when the clock frequencies of the signal and interference differ by an arbitrary value. A simplified approximation of the obtained algorithm is proposed.Downloads
Published
2020-09-30
Issue
Section
Telecommunication, navigation and radar systems, electroacoustics
License
Copyright (c) 2020 V. F. Yerokhin, M. S. Irkha
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).