The entropy analysis of radio control process
DOI:
https://doi.org/10.20535/RADAP.2015.63.13-20Keywords:
radio control, entropy, informationAbstract
Introduction. Macroscopic analysis makes it possible to consider the radio control process as a whole and go from casual to regular for studies of complex systems and processes. The transition to a qualitatively new level of analysis involves the dynamic models use. In this case it is possible to set the required control time, laws to reduce the entropy of the control object, the relationship between the main parameters of the process control. Problem statement. Entropy is the objective characteristic of control precision. The collection of previously collected data on the properties of the control object, disturbances and other factors form the original information. Working information is extracted in the control process. The required amount of information to reduce the control object entropy it enables to consider the process of radio control in the dynamics. The radio control dynamic model (the dynamic equation), which reveals the laws of change of the control object entropy in conditions of the control information absence and the control information availability necessary to make. It should take into consideration that the control object entropy value and the control information amount reaches a certain limit value. The model should give the opportunity to take into account the basic radio characteristics of the control object channel. Theoretical results. A dynamic model which takes into account the relationship between the rate of change of control object entropy and the amount of information that goes on the control channel was proposed. The constant rate of object entropy increase in the control absence and the constant rate of object entropy decrease in the control organization were considered. Restrictions on the potentially possible entropy values and the information amount were included. The steady state situation was analyzed. The time during which the control process can be accomplished was established. The requirement to the relation between the entropy potential value and the quantity of information was determined. The relation between the relative error of the radio control, the control object entropy value and the starting information was established. Conclusion. The results make it possible to determine the pattern of the control object entropy change, both in terms of receipt control information, and if it is the reduction in a contingency situation. On the basis of the entropy analysis procedures set a limit on the relative radio control errors, required time and the maximum value of the control object entropy. Hourly and the entropy limit for the radio control process take account the radio control channel characteristics, channel bandwidth, signal power, noise power, and the relative error of control.Downloads
Published
2015-12-30
Issue
Section
Computing methods in radio electronics
License
Copyright (c) 2020 V. O. Bychkovskyi, Yu. Yu. Reutskaya
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).