Frame-based synchronization adaptive method for systems based on DVB-S2 standard on FPGA
DOI:
https://doi.org/10.20535/RADAP.2015.62.77-86Keywords:
SDR, FPGA, MDP, DPDI, DVB-S2, Differential correlationAbstract
Introduction. With the development of digital technology, increasingly greater attention is paid to building radio-receiving paths based on SDR technology (Software Defined Radio). This technology involves the construction of SoC system on FPGA. Synchronization system is an important part of any radio system. This article analyzes the frame synchronization algorithms used today in terms of their efficiency and practical implementation on FPGA. Problem Statement. There are many frame synchronization algorithms for communication systems. Algorithms based on differential correlation method are extensively used these days because they are insensitive to phase and frequency distortions. The main disadvantage of the existing methods is their sensitivity to changes in the level of the input signal. Therefore, the development of the algorithm with an adaptive threshold for implementation on FPGA is an important task. Frame synchronization algorithm for DVB-S2 standard. This section shows analysis of modern frame synchronization algorithms, which are used in DVB-S2 receivers, and shows characteristics of MDP. Frame synchronization algorithm with adaptive threshold. Algorithm with adaptive threshold [P2], which is resistant to changes in the level of the input signal, is suggested. Also a comparative analysis of this method and methods listed above is made. Modification of the algorithm [P2] for implementation on FPGA. This section shows practical ways to implement the adaptive algorithm on FPGA hardware platform. In particular, the approximating method was used to find the location of the complex number modulus, the implementation of which is easily performed on the FPGA chip logic elements without loss of performance of the algorithm as a whole. Conclusions. Suggested adaptive frame synchronization algorithm eliminates Automatic Gain Control (AGC) system from signal processing phase. This approach of using an adaptive threshold can be used for more sophisticated algorithms, in particular for DPDI. In future works, these tasks will be addressed.Downloads
Published
2015-09-30
Issue
Section
Telecommunication, navigation and radar systems, electroacoustics
License
Copyright (c) 2020 O. S. Kruhlyk, M. P. Pavlenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).