Unmasking the soil cover's disruption by use of a dynamic model of measurement aerospace parameters of ground vegetation

Authors

  • E. V. Vysotskaya Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
  • G. N. Zholtkevych V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
  • T. A. Klochko National Aerospace University "Kharkiv Aviation Institute", Kharkiv, Ukraine
  • Yu. G. Bespalov V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
  • K. V. Nosov V. N. Karazin Kharkiv National University, Kharkiv, Ukraine

DOI:

https://doi.org/10.20535/RADAP.2016.64.101-109

Keywords:

remote sensing, unmasking soil cover's disruption, colorimetry, dynamical systems

Abstract

The "Introduction" describes topicality and importance of revealing the soil cover's disruption for a wide range of fields. It was shown that spectral brightness and colorimetric parameters of ground vegetation can be used for this task. However, a traditional scheme of data processing for remote sensing requires a long-term observations and can not always be applied, if quick decision-making is necessary or there is lack of information. Such cases require the use of special methods, one of which is a dynamic model developed with authors' participation based on the following basic relationships: (+,-) (-, -) (+, 0), (-, 0) (0,0). The section "Brief description of a dynamic model" describes the basic principles of dynamic systems used to solve the problem. Using above-mentioned relationships, the dynamics of a system consisting of several components is constructed and its main properties are listed. The main feature of this model is that the identification of structure and parameters of the dynamic system does not required sequential order of observations (as for models based on time series). This feature of the model enables for identifying the system's parameters of dynamics of the natural system to use information from a single picture taken from the spacecraft rather than long-term observations. The section "Materials and Methods" describes specific colorimetric parameters used to analyze the vegetation cover. The section "Obtained results" contains an example of the model's application to a satellite image for detecting the differences in two sites of a field with vegetation. One site is a recultivated area near the liquidated gas-oil well, another site is non-recultivated area at a considerable distance from the well (500-1000 m). The simulation results are described by eight signed graphs (4 graphs for each sites), whose structure allows to identify the system differences between the two cases. The section "Conclusions" summarizes the results of previous sections. The prospects of the use of proposed methodology for soil cover's disruption are shown. Advantages of this methodology over other approaches are highlighted.

Author Biographies

E. V. Vysotskaya, Kharkiv National University of Radio Electronics, Kharkiv

Vysotskaya E. V., DSc, Assistant Professor

G. N. Zholtkevych, V. N. Karazin Kharkiv National University, Kharkiv

Zholtkevych G. N., DSc, Professor

T. A. Klochko, National Aerospace University "Kharkiv Aviation Institute", Kharkiv

Klochko T. A.

Yu. G. Bespalov, V. N. Karazin Kharkiv National University, Kharkiv

Bespalov Yu. G., MS

K. V. Nosov, V. N. Karazin Kharkiv National University, Kharkiv

Nosov K. V., PhD

Published

2016-03-30

Issue

Section

Telecommunication, navigation and radar systems, electroacoustics