The study of the amplitudes of the fields excited linear grating horn irradiators
DOI:
https://doi.org/10.20535/RADAP.2016.67.5-11Keywords:
horn irradiator, amplitude of electromagnetic field, linear antenna arrayAbstract
The problem of scattering from a linear grating of horns can be solved only with approximate methods because known mathematical methods allow to obtain solutions only for simple mathematical models for example for the endless arrays of planar waveguides. Other sources include experimental characteristics of the amplitudes of the fields excited in apertures and the fields scattered by such grating, however, the theoretical calculations are not given. The problem determining of the amplitudes of the field excited by horn radiators, for arbitrary incidence of the plane electromagnetic wave is solved in references. However, the applicability of this solution for the linear grating of the horn irradiators (waveguides) is investigated, which in turn hinders the development of antenna arrays with reduced scattered field. Thus, there is the problem of developing methods for the investigation of electromagnetic fields amplitudes excited in aperture of n-th radiator grating when incident to flat electromagnetic wave, properly polarized in the plane of incidence from an arbitrarily specified sources. The methodology of the study of the electromagnetic fields amplitudes, which are excited in n-th radiator linear grating aperture when the incidence of the plane electromagnetic wave polarized normal to the plane of incidence from an arbitrarily specified sources. It is found that under these conditions, aperture will be excited only with the waves of magnetic type – $A^{H\perp}_{+0m_y}$. The amplitude of the waves excited by n-th emitter is virtually identical to the amplitude of the central even with the distance between them. The results can be used to study more complex rectangular antenna arrays consisting of the n-th number of linear.Downloads
Published
2016-12-30
Issue
Section
Electrodynamics. Microwave devices. Antennas
License
Copyright (c) 2020 O. L. Sydorchuk
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).