Сriteria of crystal-like structures approaching by impedance delta-inhomogeneities lattices
DOI:
https://doi.org/10.20535/RADAP.2016.67.58-64Keywords:
crystal-like structure, impedance delta-inhomogeneityAbstract
Introduction. Crystal-like structures (CS) have unique, similar to crystals, band spectral characteristics and form the basis of new various signal processing devices. In this paper the criteria of CS approaching by δ-inhomogeneities lattices are established. Wave mediums of crystal-like structures. Quantum-mechanical, electromagnetic and acoustic wave mediums are considered and expressions for impedance δ-barriers and δ-wells input impedances and admittance are described. Unlimited impedance δ-wells lattices. Features of impedance δ-wells lattice are considered. Expression for input impedance of impedance δ-wells lattice is obtained. Active and reactive input impedance components characteristics of unlimited impedance δ-inhomogeneities lattices are presented. Unlimited crystal-like structures approaching. Comparative analysis of input impedance components characteristics of unlimited CSs and δ-inhomogeneities lattices are considered. Criteria of unlimited CSs approaching by δ-inhomogeneities lattices are established. Limited crystal-like structures approaching. Comparative analysis of input impedance components characteristics of limited CSs and δ-inhomogeneities lattices are considered. Criteria of limited CSs approaching by δ-inhomogeneities lattices are established. Conclusions. Criteria for unlimited and limited CS approaching by δ-inhomogeneities lattices limiting CS inhomogeneity width by one-fourth of the wavelength and normalized wave impedance of electromagnetic and acoustic inhomogeneities by values of not less than 3 or not more than 1/3. These criteria determine range of modeling ― energy for quantum-mechanical CSs and frequency for electromagnetic and acoustic CSs accordingly.Downloads
Published
2016-12-30
Issue
Section
Functional Electronics. Micro- and Nanoelectronic Technology
License
Copyright (c) 2020 E. A. Nelin, A. V. Liashok
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).