Signals Features from Distributed Targets of Autodyne SRR with Simultaneous Pulse Amplitude and Linear Frequency Modulations
DOI:
https://doi.org/10.20535/RADAP.2017.71.28-35Keywords:
autodyne, autodyne effect, autodyne signal, radio pulse autodyne, autodyne with frequency modulation, feedback parameter, short-range radar.Abstract
A mathematical model for signals description of the autodyne short-range radar (ASRR) with the simultaneous pulse amplitude modulation (PAM) and the linear frequency modulation (FM) is considered. The peculiarities of signal formation are described, which are obtained from the radar distributed object in the form of an ensemble of an arbitrary number of point-type reflectors. Signal calculations are carried out by the offered approach of the step method for the case of two point reflectors on the radar object located at various distances from ASRR. The distinctive signal properties formed at reception of the first and further emissions reflected form the radar object are established. After sending of the probe emission, the reception of the first reflected emission from the set of shining points is accompanied by linear signal superposition formation from separate reflectors. The reception of further reflections causes an appearance of combinational signal interaction from separate reflectors. The character and degree of such an interaction is defined by the feedback parameter of ASRR, which depends on the autodyne frequency deviation and delay time of reflected emission. Results of ASRR experimental investigations with simultaneous PAM and the linear FM are obtained using the oscillating module made on the Gunn diode of 8mm-range.Downloads
Published
2017-12-30
Issue
Section
Telecommunication, navigation and radar systems, electroacoustics
License
Copyright (c) 2020 V. Ya. Noskov, K. A. Ignatkov, A. P. Chupahin, A. S. Vasiliev, A. V. Fateev, S. M. Smolskiy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).