Research of Dispersion Characteristics of a Rectangular Waveguide with a Corrugated Bottom Wall by the Coupled Wave Method

Authors

DOI:

https://doi.org/10.20535/RADAP.2021.86.29-38

Keywords:

rectangular waveguide, corrugated rectangular waveguide, coupled wave method, dispersion equation, constant spread

Abstract

The research on dispersive characteristics of a rectangular waveguide with the goffered bottom wall a method of the connected waves is presented.

Rectangular and round waveguides with the goffered walls usually are used in a superhigh-frequency range as band-pass and low-pass filters, irradiators of multiband mirror aerials of satellite communication; in radar-tracking gauges of a W-range for detection and creation of cards of space garbage, etc. Definition of a constant of distribution in a rectangular waveguide with the goffered bottom wall by the method of the connected waves is conducted by transformation of the homogeneous differential equation with non-uniform boundary conditions to the non-uniform differential equation with homogeneous boundary conditions. The electromagnetic field in the cells of the corrugation of a rectangular waveguide with a corrugated bottom wall is found through the vector potential, which depends on the radial coordinate. The function of changing the electromagnetic field along the radial coordinate is determined by solving the Bessel equation. The vector of the magnetic field strength and the amplitudes of the components of the magnetic field strengths in the cross section of a rectangular waveguide and the component of the electric field strength tangential to the cell surface are found through the vector potential.

The tangential component of the electric field strength along the narrow walls of a rectangular waveguide is calculated. An equivalent magnetic surface current is introduced along the wide and narrow walls of a rectangular waveguide. For a regular rectangular waveguide with magnetic currents on its walls, solutions of equations that satisfy the orthogonality conditions, for determining the amplitudes of electromagnetic fields in the positive and negative directions along the axis of the regular rectangular waveguide, correction to the wave propagation constant of the i-th k'j type is given.

The graphs of the calculated and experimental dependences of the propagation constant k'j on the ratio λ/a (λ - wavelength, m) for waves of quasi types H10, H20, and H01 in a WR-112 rectangular waveguide with cross-sectional dimensions (a x b) mm = (28,5 x 12,64) mm with a corrugated bottom wall at fixed relative dimensions of the cell depth t, the distance between the corrugations s and the width of the lower base of the trapezoid of the cross-section of the corrugation Dδ=t/a, u=s/a, and p=D/a. The dependences of the propagation constant k'j on the ratio λ/a for a quasi-type wave H10 were studied in the frequency range from 5.2 GHz to 7.1 GHz, for a quasi-type wave H20 - from 10.5 GHz to 11.8 GHz, for a quasi-type wave H01 - from 11.7 GHz up to 18.1 GHz. The dispersion characteristics of waves of the types of quasi H10, H20, and H01 a rectangular waveguide with a corrugated bottom wall with a decrease in the relative depth of the corrugation δ approach the dispersion characteristics of the types of waves of a regular rectangular waveguide and, in the case of the boundary (δ→0), coincide with them. The error of the calculated data relative to the experimental data is about 5%, which confirms the suitability of the proposed method for practical calculations even in the first approximation.

The proposed technique may be appropriate for choosing the approximation that provides the required calculation accuracy in practice with a minimum amount of computation.

The reliability and validity of the results obtained is ensured by the convergence of the results of the calculation according to the boundary conditions with the known results and the convergence of the formulas obtained by the units of measurement.

References

Ovechkin V. S., Popov N. O. (2018). Varianty postroeniya gofrirovannyh volnovodnyh fil'trov [Alternate Design of Corrugated Waveguide Filters]. Bauman Moscow State Technical Universiti. Journal of Instrument Engineering, No. 4. pp. 45–58. doi: 10.18698/0236-3933-2018-4-45-58. [In Russian].

Gabriehlyan D. D., Demchenko V. I., Korovkin A. E., Razdorkin D. Ya., Shupilin A. V., Poltavec Yu. I. (2018). Issledovanie chastotnykh kharakteristik obluchatelya chetyrekhdiapazonnoj antenny na osnove gofrirovannogo rupora [The Research of Exciter Frequency Characteristics of a Quad-Band Antenna Based on a Corrugated Horn]. Raketno-kosmicheskoe priborostroenie i informacionnye sistemy [Rocket-space device engineering and information systems], Vol. 5, No. 1. pp. 58–64. doi: 10.30894/issn2409-0239.2018.5.1.58.64. [In Russian].

Yurovskij L. A., Zotova I. V., Abubakirov E. B., Rozental R. M., Sergeev A. S., Ginzburg N. S. (2020). Generation of ultra-powerful microwave pulses in stretcher-amplifier-compressor systems. Journal of Radio Electronics, No. 12. pp. 58–64. doi:10.30898/1684-1719.2020.12.21.

Haas D., Thumm M., Jelonnek J. (2021). Calculations on Mode Eigenvalues in a Corrugated Waveguide with Varying Diameter and Corrugation Depth. Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 42. pp. 493–503. doi:10.1007/s10762-021-00791.

Doty F. D., Doty G. N., Staab J. P., Sizyuk Y., Ellis P. D. (2021). New insights from broadband simulations into small overmoded smooth and corrugated terahertz waveguides and transitions for NMR-DNP. Journal of Magnetic Resonance Open, Vol. 6–7, pp. 1–22. doi:10.1016/j.jmro.2020.100009.

Dubroca T., Smith A. N., Pike K. J., Froud S., Wylde R., et al. (2018). A quasi-optical and corrugated waveguide microwave transmission system for simultaneous dynamic nuclear polarization NMR on two separate 14.1 T spectrometers. Journal of Magnetic Resonance, Vol. 289, pp. 35–44. doi: 10.1016/j.jmr.2018.01.015.

Lau C., Kaufman M. C., Doyle E. J., Hanson G. R., Peebles W. A., Wang G., Zolfaghari A. (2019). Circular Corrugated Miter Bend and Gap Losses for Broadband Frequency Applications. IEEE Transactions on Microwave Theory and Techniques, Vol. 67, Iss. 1, pp. 38–49. doi: 10.1109/TMTT.2018.2879808.

Abbasi M., Ricketts D. S. (2016). W-band corrugated and non-corrugated conical horn antennas using stereolithography 3D-printing technology. Asia-Pacific Microwave Conference (APMC). doi:10.1109/APMC.2016.7931300.

Patel A., Bhatt P., Mahant K., Vala A., Sathyanarayana K., Kulkarni S. V., Rathi D. (2020). Oversized Circular Corrugated Waveguides Operated at 42 GHz for ECHR Application. Progress In Electromagnetics Research M, Vol. 88, pp. 73–82. doi: 10.2528/pierm19102302.

Karashchuk N. M., Manoilov V. P., Sidorchuk О. L., Tarasenko S. M. and Chukhov V. V. (2019). Method of Measuring Effective Dielectric Permittivity of Partially Filled Waveguides Using a Mismatched T-Bridge. Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, Vol. 78, pp. 6-12. doi: 10.20535/RADAP.2019.78.6-12.

Gabriehlyan D. D., Demchenko V. I., Korovkin A. E., Razdorkin D. Ya., Gvozdyakov Yu. A., Poltavec Yu. I. (2017). Postroenie obluchatelej mnogodiapazonnykh zerkal'nykh antenn sistem sputnikovoj svyazi [Building of exciters of multiband mirror antennas for satellite communication systems]. Raketno-kosmicheskoe priborostroenie i informacionnye sistemy [Rocket-space device engineering and information systems], Vol. 4, No. 1. pp. 40–45. doi: 10.17238/issn2409-0239.2017.1.40. [In Russian].

Kurushin E. N., Nefedov E. I., Fialkovskij A. T. (1975). Difrakciya elektromagnitnykh voln na anizotropnykh strukturakh [Diffraction of electromagnetic waves by anisotropic structures]. Moskva, Science, 240 p. [In Russian].

Nefedov E. I., Fialkovskij A. T. (1972). Asimptoticheskaya teoriya difrakcii elektromagnitnykh voln na konechnykh strukturakh [Asymptotic theory of diffraction of electromagnetic waves on finite structures]. Moskva, Science, 320 p. [In Russian].

Sharov G. A. (2016). Volnovodnye ustrojstva santimetrovykh i millimetrovykh voln [Waveguide devices of centimeter and millimeter waves]. Goryachaya liniya – Telekom, 640 p. [In Russian].

Egorov Yu. V. (1967). Chastichno zapolnennye pryamougolnye volnovody [Partially filled rectangular waveguides]. Moskva: Sov. radio, 216 p. [In Russian].

Buldyrev V. S., Buslaev V. S. (1981). Asymptotic methods in the problems of asoustics propagation in ocean waveguide and their number realization. Zapiski Nauchnykh Seminarov LOMI, Vol. 117. pp. 39–77. [In English].

Babich V. M., Buldyrev V. S. (1972). Asimptoticheskie metody v zadachah difrakcii korotkih voln [Asymptotic methods in problems of diffraction of short waves]. Moskva, Nauka, 456 p. [In Russian].

Manojlov V. P., Pavljuk V. V., Stavisjuk R. L. (2016). Shyrokosmugovi ruporni anteny zi skladnoju formoju poperechnogo pererizu: monografija [Broadband horn antennas with a complex cross-sectional shape: a monograph]. Zhytomyr: Vydavec' O. O. Jevenok, 212 p. [In Ukrainian].

Gnatyuk M. O. (2021). Rozvizok metodu іntegralnikh rіvnyan chastkovikh oblastej, shcho peretinayutsya, dlya rozvyazannya khvilevodnikh zadach difrakcіi: avtoref. dis. kand. fіz.-mat. nauk: 01.04.03 "Radіofіzika" [Development of the method of integral equations of intersecting partial domains for solving waveguide diffraction problems: author's ref. dis. Cand. physical and mathematical Sciences: 01.04.03 "Radiophysics"]. Open Electronic Archive of Kharkov National University of Radio Electronics, 20 p. [In Ukrainian].

Komarov V. V., Lukyanov M. A. (2021). Waveguide microwave filters technical solutions, development trends and calculation methods. Journal of Radio Electronics, Vol. 1. pp. 1684-1719. doi:10.30898/1684-1719.2021.1.9. [In Russian].

Petrov B. M. (2003). Ehlektrodinamika i rasprostranenie radiovoln [Electrodynamics and propagation of radio waves]. Moskva, Hotline – Telekom, 358 p. [In Russian].

Vaynshteyn V. A. (1988). Elektromagnitnye volny [Electromagnetic waves]. Moskva, Radio and communication, 1988. 436 p. [In Russian].

Fedorov N. N. (1980). Osnovy ehlektrodinamiki: uchebnoe posobie dlya vuzov [Fundamentals of electrodynamics: a textbook for universities]. Moskva, High school, 399 p. [In Russian].

Lavrenko Yu. E. (1977). Rasprostranenie voln v mnogomodovom volnovode s poteryami v stenkakh [Wave propagation in a multimode waveguide with losses in the walls]. Leningrad National Technical Institute, No. 216. pp. 3–6. [In Russian].

Ilarionov Yu. A., Raevskij S. B., Smorgonskij V. Ya. (1980). Raschet gofrirovannykh i chastotno-zapolnennykh volnovodov [Calculation of corrugated and frequency-filled waveguides]. Moskva, Sov. radio, 200 p. [In Russian].

Published

2021-09-30

Issue

Section

Electrodynamics. Microwave devices. Antennas